
1
1

A “Hands-on” Introduction to
OpenMP*

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Bronis R. de Supinski
Lawrence Livermore Natl. Lab.
bronis@llnl.gov

	

Tim Mattson
Intel Corp.

timothy.g.mattson@intel.com

Acknowledgements: J. Mark Bull (EPCC), Mike Pearce (Intel), Larry Meadows (Intel),
Barbara Chapman (UH), and many others have contributed to these slides over the years.

2

Preliminaries: Part 0

•  Systems we’ll use for these lectures
ssh <<login_name>>@vesta.aclf.anl.gov

•  The OpenMP compiler on blue gene systems
xlc++_r –qsmp=omp << file names>>

•  Copy the exercises to your home directory
$ cp /projects/ATPESC2015/OpenMP

•  Running code
– You can just run on the login nodes on Vesta, but you will get in each

others way. Or you can use qsub to get good timing numbers

•  Or run on your own laptops:
–  I use gnu compilers on my apple laptop
– Download xcode with command line tools from Apple
– Download macports (from macports.org)
–  sudo port install gcc5
–  sudo port select –set gcc mp-gcc5
–  gcc –fopenmp <<file names>>

3

Preliminaries: Part 1

• Disclosures
– The views expressed in this tutorial are those of the

people delivering the tutorial.
– We are not speaking for our employers.
– We are not speaking for the OpenMP ARB

• We take these tutorials VERY seriously:
– Help us improve … tell us how you would make this

tutorial better.

4

Preliminaries: Part 2

• Our plan for the day .. Active learning!
– We will mix short lectures with short exercises.
– You will use your laptop to connect to a multiprocessor

server.
• Please follow these simple rules
– Do the exercises that we assign and then change things

around and experiment.
– Embrace active learning!

– Don’t cheat: Do Not look at the solutions before you
complete an exercise … even if you get really frustrated.

Agenda for the day

5

8:30 -10:00 Introduction to OpenMP: Part 1
10:00 – 10:30 break
10:30 – 12:00 Introduction to OpenMP: Part 2
12:00 – 1:00 Lunch
1:00 – 2:00 Hybrid MPI programming
2:00 – 3:00 Advanced OpenMP
3:00 - 3:30 break
3:30 - 5:30 OpenMP 4.0 features (start at 4:00)
5:30 – 6:30 Overview of OpenACC
6:30 to 9:15 Exercises (OpenMP Challenge problems)

9:15 – 9:30 Wrap up

Our OpenMP progression

Topic Exercise concepts
I. OMP introduction Install sw, hello_world Parallel regions
II. Creating threads Pi_spmd_simple Parallel, default data

environment, runtime library
calls

III. Synchronization Pi_spmd_final False sharing, critical, atomic

IV. Parallel loops Pi_loop For, schedule, reduction,

V. Odds and ends No Exercise Single, sections, master,
runtime libraries, environment
variables, synchronization, etc.

VI. Data environment Mandelbrot set area Data environment details,
software optimization

VII. OpenMP tasks Pi_recur Explicit tasks in OpenMP

VIII. Memory model,
flush, threadprivate

No exercise Applying OpenMP to more
complex problems

IX. Latest OpenMP
news and wrap up

No exercise Recent additions, advanced
features and summary

7

Outline

•  Introduction to OpenMP
•  Creating Threads
•  Synchronization
•  Parallel Loops
•  Synchronize single masters and stuff
•  Data environment
•  Tasks
•  Memory model
•  Threadprivate Data
•  Recent additions and future OpenMP directions
•  Challenge Problems

8

OpenMP* overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTER C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded
Applications

§ A set of compiler directives and library routines for
parallel application programmers

§ Greatly simplifies writing multi-threaded (MT) programs
in Fortran, C and C++

§ Standardizes established SMP practice + vectorization and
heterogeneous device programming

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

9

OpenMP basic definitions: Basic Solution stack

OpenMP Runtime library

OS/system support for shared memory and threading

S
ys

te
m

 la
ye

r

Directives,
Compiler

OpenMP library Environment
variables P

ro
g.

La

ye
r

Application

End User

U
se

r l
ay

er

Shared Address Space

Proc3 Proc2 Proc1 ProcN

H
W

10

OpenMP basic definitions: NUMA Solution stack

Shared Address Space

Shared Address Space

Proc2 Proc1

Shared Address Space

Proc4 Proc3

Shared Address Space

ProcN ProcN-1

Supported with first touch policies plus
newer constructs such as places,

omp_proc_bind, teams, and more

OpenMP basic definitions: Target solution stack

Supported (since OpenMP 4.0)
with target, teams, distribute,

and other constructs

Target Device: Xeon Phi™ processor

Host

Target Device: GPU

12

OpenMP core syntax
•  Most of the constructs in OpenMP are compiler directives.

#pragma omp construct [clause [clause]…]
– Example

#pragma omp parallel num_threads(4)

•  Function prototypes and types in the file:
#include <omp.h>
use omp_lib

•  Most OpenMP* constructs apply to a “structured block”.
– Structured block: a block of one or more statements with

one point of entry at the top and one point of exit at the
bottom.
– It’s OK to have an exit() within the structured block.

13

Exercise 1, Part A: Hello world
Verify that your environment works
•  Write a program that prints “hello world”.

#include<stdio.h>
int main()
{

 int ID = 0;

 printf(“ hello(%d) ”, ID);
 printf(“ world(%d) \n”, ID);

}

14

Exercise 1, Part B: Hello world
Verify that your OpenMP environment works
•  Write a multithreaded program that prints “hello world”.

#include <stdio.h>
int main()
{

 int ID = 0;

 printf(“ hello(%d) ”, ID);
 printf(“ world(%d) \n”, ID);

}

Switches for compiling and linking

gcc -fopenmp Linux, OSX

pgcc -mp pgi

icl /Qopenmp intel (windows)

icc –openmp intel (linux)

#pragma omp parallel

{

}

#include <omp.h>

}

15

Exercise 1: Solution
A multi-threaded “Hello world” program

•  Write a multithreaded program where each thread prints
“hello world”.

#include <omp.h>
#include <stdio.h>
int main()
{

#pragma omp parallel
 {

 int ID = omp_get_thread_num();
 printf(“ hello(%d) ”, ID);
 printf(“ world(%d) \n”, ID);
 }
}

Sample Output:
hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

OpenMP include file

Parallel region with
default number of threads

Runtime library function to
return a thread ID.

End of the Parallel region

16

OpenMP overview:
How do threads interact?

•  OpenMP is a multi-threading, shared address model
– Threads communicate by sharing variables.

•  Unintended sharing of data causes race conditions:
– Race condition: when the program’s outcome changes as the threads

are scheduled differently.

•  To control race conditions:
– Use synchronization to protect data conflicts.

•  Synchronization is expensive so:
– Change how data is accessed to minimize the need for

synchronization.

17

Outline

•  Introduction to OpenMP
•  Creating Threads
•  Synchronization
•  Parallel Loops
•  Synchronize single masters and stuff
•  Data environment
•  Tasks
•  Memory model
•  Threadprivate Data
•  Recent additions and future OpenMP directions
•  Challenge Problems

18

OpenMP programming model:

Fork-Join Parallelism:
u Master thread spawns a team of threads as needed.

u Parallelism added incrementally until performance goals are met,
i.e., the sequential program evolves into a parallel program.

Parallel Regions
Master
Thread
in red

A Nested
Parallel
region

Sequential Parts

19

Thread creation: Parallel regions

•  You create threads in OpenMP* with the parallel construct.
•  For example, To create a 4 thread Parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

 int ID = omp_get_thread_num();
 pooh(ID,A);
}

l Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread
executes a
copy of the
code within
the
structured
block

Runtime function to
request a certain
number of threads

Runtime function
returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

20

Thread creation: Parallel regions

•  You create threads in OpenMP* with the parallel construct.
•  For example, To create a 4 thread Parallel region:

double A[1000];

#pragma omp parallel num_threads(4)
{

 int ID = omp_get_thread_num();
 pooh(ID,A);
}

l Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread
executes a
copy of the
code within
the
structured
block

clause to request a certain
number of threads

Runtime function
returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

21

Thread creation: Parallel regions example

•  Each thread executes the
same code redundantly.

	
double A[1000];
omp_set_num_threads(4);
 #pragma omp parallel
{

 int ID = omp_get_thread_num();
 pooh(ID, A);
}
 printf(“all done\n”); omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single
copy of A is
shared
between all
threads.

Threads wait here for all threads to finish
before proceeding (i.e., a barrier)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

22

Exercises 2 to 4:
Numerical integration

∫ 	
4.0
(1+x2) dx = π

0

1

∑ F(xi)Δx ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the integral as a
sum of rectangles:

Where each rectangle has width Δx and
height F(xi) at the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X 0.0

23

Exercises 2 to 4: Serial PI program

static long num_steps = 100000;
double step;
int main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}

See OMP_exercises/pi.c

24

Exercise 2
•  Create a parallel version of the pi program using a parallel

construct:
 #pragma omp parallel.
•  Pay close attention to shared versus private variables.
•  In addition to a parallel construct, you will need the runtime

library routines
– int omp_get_num_threads();
– int omp_get_thread_num();
– double omp_get_wtime();
– omp_set_num_threads(); Time in Seconds since a

fixed point in the past

Thread ID or rank

Number of threads in the team

Request a number of
threads in the team

25

Exercise 2 (hints)
•  Use a parallel construct:
 #pragma omp parallel.
•  The challenge is to:
– divide loop iterations between threads (use the thread ID and the

number of threads).
– Create an accumulator for each thread to hold partial sums that you

can later combine to generate the global sum.

•  In addition to a parallel construct, you will need the runtime
library routines
–  int omp_set_num_threads();
–  int omp_get_num_threads();
–  int omp_get_thread_num();
– double omp_get_wtime();

Results*

26
*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

threads 1st
SPMD

1 1.86

2 1.03

3 1.08

4 0.97

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

27

Why such poor scaling? False sharing
•  If independent data elements happen to sit on the same cache line, each

update will cause the cache lines to “slosh back and forth” between threads
… This is called “false sharing”.

•  If you promote scalars to an array to support creation of an SPMD
program, the array elements are contiguous in memory and hence share
cache lines … Results in poor scalability.

•  Solution: Pad arrays so elements you use are on distinct cache lines.

Sum[0] Sum[1] Sum[2] Sum[3] Sum[0] Sum[1] Sum[2] Sum[3]
Core 0 Core 1

L1 $ lines L1 $ lines

HW thrd. 0 HW thrd. 1 HW thrd. 2 HW thrd. 3

Shared last level cache and connection to I/O and DRAM

28

#include <omp.h>
static long num_steps = 100000; double step;
#define PAD 8 // assume 64 byte L1 cache line size
#define NUM_THREADS 2
void main ()
{ int i, nthreads; double pi, sum[NUM_THREADS][PAD];

 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);

 #pragma omp parallel
 { int i, id,nthrds;
 double x;
 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;

 for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
 x = (i+0.5)*step;
 sum[id][0] += 4.0/(1.0+x*x);
 }

 }
 for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i][0] * step;

}

Example: Eliminate false sharing by padding the sum array

Pad the array so
each sum value is

in a different
cache line

Results*: pi program padded accumulator

29

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st
SPMD

1st
SPMD
padded

1 1.86 1.86

2 1.03 1.01

3 1.08 0.69

4 0.97 0.53

30

Outline

•  Introduction to OpenMP
•  Creating Threads
•  Synchronization
•  Parallel Loops
•  Synchronize single masters and stuff
•  Data environment
•  Tasks
•  Memory model
•  Threadprivate Data
•  Recent additions and future OpenMP directions
•  Challenge Problems

Discussed later

31

Synchronization

•  High level synchronization:
– critical
– atomic
– barrier
– ordered

•  Low level synchronization
– flush
– locks (both simple and nested)

Synchronization is used to
impose order constraints and
to protect access to shared
data

32

Synchronization: critical
•  Mutual exclusion: Only one thread at a time can enter a

critical region.

float res;

#pragma omp parallel

{ float B; int i, id, nthrds;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 for(i=id;i<niters;i+=nthrds){

 B = big_job(i);

#pragma omp critical
 res += consume (B);

 }
}

Threads wait
their turn – only
one at a time
calls consume()

33

Synchronization: atomic

•  Atomic provides mutual exclusion but only applies to the update
of a memory location (the update of X in the following example)

#pragma omp parallel

{
 double tmp, B;

 B = DOIT();

 #pragma omp atomic
 X += big_ugly(B);

}

#pragma omp parallel

{
 double tmp, B;

 B = DOIT();

 tmp = big_ugly(B);

 #pragma omp atomic
 X += tmp;

}

Atomic only protects the
read/update of X

34

Exercise 3

•  In exercise 2, you probably used an array to create space for
each thread to store its partial sum.

•  If array elements happen to share a cache line, this leads to
false sharing.

– Non-shared data in the same cache line so each update invalidates the
cache line … in essence “sloshing independent data” back and forth
between threads.

•  Modify your “pi program” from exercise 2 to avoid false
sharing due to the sum array.

Pi program with false sharing*

35
*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

threads 1st
SPMD

1 1.86

2 1.03

3 1.08

4 0.97

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

Recall that promoting sum to an
array made the coding easy, but led
to false sharing and poor
performance.

36

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int nthreads; double pi; step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{

 int i, id, nthrds; double x, sum;
 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;

 for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }

 #pragma omp critical
 pi += sum * step;

}
}

Example: Using a critical section to remove impact of false sharing

Sum goes “out of scope” beyond the parallel
region … so you must sum it in here. Must
protect summation into pi in a critical region so
updates don’t conflict

No array, so
no false
sharing.

Create a scalar local
to each thread to
accumulate partial
sums.

Results*: pi program critical section

37

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st
SPMD

1st
SPMD
padded

SPMD
critical

1 1.86 1.86 1.87

2 1.03 1.01 1.00

3 1.08 0.69 0.68

4 0.97 0.53 0.53

38

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int nthreads; double pi; step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{

 int i, id,nthrds; double x;
 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;

 for (i=id, sum=0.0;i< num_steps; i=i+nthreads){
 x = (i+0.5)*step;

 #pragma omp critical
 pi += 4.0/(1.0+x*x);
 }

}
pi *= step;
}

Example: Using a critical section to remove impact of false sharing

What would happen if
you put the critical
section inside the
loop?

Be careful where you
put a critical section

39

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int nthreads; double pi; step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{

 int i, id,nthrds; double x, sum;
 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;

 for (i=id, sum=0.0;i< num_steps; i=i+nthrds){
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }

 sum = sum*step;
 #pragma atomic

 pi += sum ;
}
}

Example: Using an atomic to remove impact of false sharing

Sum goes “out of scope” beyond the parallel
region … so you must sum it in here. Must
protect summation into pi so updates don’t
conflict

No array, so
no false
sharing.

Create a scalar local to
each thread to
accumulate partial
sums.

40

Outline

•  Introduction to OpenMP
•  Creating Threads
•  Synchronization
•  Parallel Loops
•  Synchronize single masters and stuff
•  Data environment
•  Tasks
•  Memory model
•  Threadprivate Data
•  Recent additions and future OpenMP directions
•  Challenge Problems

41

Discussed later

SPMD vs. worksharing

•  A parallel construct by itself creates an SPMD or “Single
Program Multiple Data” program … i.e., each thread
redundantly executes the same code.

•  How do you split up pathways through the code between
threads within a team?
– Worksharing constructs

§ Loop construct
§ Sections/section constructs
§ Single construct

– Task constructs

42

The loop worksharing constructs

•  The loop worksharing construct splits up loop iterations
among the threads in a team

#pragma omp parallel

{ 
#pragma omp for  

 for (I=0;I<N;I++){ 
 NEAT_STUFF(I); 
 } 

}

Loop construct name:

• C/C++: for

• Fortran: do

The variable I is made “private” to each
thread by default. You could do this
explicitly with a “private(I)” clause

43

Loop worksharing constructs
A motivating example

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel
{

 int id, i, Nthrds, istart, iend;
 id = omp_get_thread_num();
 Nthrds = omp_get_num_threads();
 istart = id * N / Nthrds;
 iend = (id+1) * N / Nthrds;
 if (id == Nthrds-1)iend = N;
 for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}

}

#pragma omp parallel
#pragma omp for

 for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
worksharing for
construct

44

Loop worksharing constructs:
The schedule clause

•  The schedule clause affects how loop iterations are mapped onto threads
–  schedule(static [,chunk])

–  Deal-out blocks of iterations of size “chunk” to each thread.
–  schedule(dynamic[,chunk])

–  Each thread grabs “chunk” iterations off a queue until all iterations have
been handled.

–  schedule(guided[,chunk])
–  Threads dynamically grab blocks of iterations. The size of the block starts

large and shrinks down to size “chunk” as the calculation proceeds.
–  schedule(runtime)

–  Schedule and chunk size taken from the OMP_SCHEDULE environment
variable (or the runtime library).

–  schedule(auto)
–  Schedule is left up to the runtime to choose (does not have to be any of the

above).

45

Schedule Clause When To Use

STATIC Pre-determined and
predictable by the
programmer

DYNAMIC Unpredictable, highly
variable work per
iteration

GUIDED

Special case of dynamic
to reduce scheduling
overhead

AUTO When the runtime can
“learn” from previous
executions of the same
loop

loop work-sharing constructs: 
The schedule clause

Least work at
runtime :
scheduling done
at compile-time

Most work at
runtime :
complex
scheduling logic
used at run-time

46

Combined parallel/worksharing construct

• OpenMP shortcut: Put the “parallel” and the
worksharing directive on the same line

 double res[MAX]; int i;
#pragma omp parallel
{
 #pragma omp for
 for (i=0;i< MAX; i++) {
 res[i] = huge();
 }
}

These are equivalent

 double res[MAX]; int i;
#pragma omp parallel for
 for (i=0;i< MAX; i++) {
 res[i] = huge();
 }

47

Working with loops

•  Basic approach
– Find compute intensive loops
– Make the loop iterations independent ... So they can safely execute in

any order without loop-carried dependencies
– Place the appropriate OpenMP directive and test

 int i, j, A[MAX];
 j = 5;
 for (i=0;i< MAX; i++) {
 j +=2;
 A[i] = big(j);
 }

 int i, A[MAX];
 #pragma omp parallel for
 for (i=0;i< MAX; i++) {
 int j = 5 + 2*(i+1);
 A[i] = big(j);
 } Remove loop

carried
dependence

Note: loop index
“i” is private by
default

#pragma omp parallel for collapse(2)
for (int i=0; i<N; i++) {
 for (int j=0; j<M; j++) {

 }
}

48

Nested loops

•  Will form a single loop of length NxM and then parallelize
that.

•  Useful if N is O(no. of threads) so parallelizing the outer loop
makes balancing the load difficult.

Number of loops
to be
parallelized,
counting from
the outside

l  For perfectly nested rectangular loops we can parallelize
multiple loops in the nest with the collapse clause:

49

Reduction

•  We are combining values into a single accumulation variable
(ave) … there is a true dependence between loop iterations
that can’t be trivially removed

•  This is a very common situation … it is called a “reduction”.
•  Support for reduction operations is included in most parallel

programming environments.

 double ave=0.0, A[MAX]; int i;
 for (i=0;i< MAX; i++) {
 ave + = A[i];
 }
 ave = ave/MAX;

l  How do we handle this case?

50

Reduction
•  OpenMP reduction clause:

reduction (op : list)

•  Inside a parallel or a work-sharing construct:
– A local copy of each list variable is made and initialized depending

on the “op” (e.g. 0 for “+”).
– Updates occur on the local copy.
– Local copies are reduced into a single value and combined with

the original global value.

•  The variables in “list” must be shared in the enclosing
parallel region.

 double ave=0.0, A[MAX]; int i;
#pragma omp parallel for reduction (+:ave)
 for (i=0;i< MAX; i++) {
 ave + = A[i];
 }
 ave = ave/MAX;

51

OpenMP: Reduction operands/initial-values
•  Many different associative operands can be used with reduction:
•  Initial values are the ones that make sense mathematically.

Operator Initial value
+ 0
* 1
- 0

min Largest pos. number

max Most neg. number

C/C++ only

Operator Initial value
& ~0

| 0

^ 0
&& 1
|| 0

Fortran Only

Operator Initial value
.AND. .true.
.OR. .false.

.NEQV. .false.
.IEOR. 0
.IOR. 0

.IAND. All bits on
.EQV. .true.

52

Exercise 4: Pi with loops

•  Go back to the serial pi program and parallelize it with a loop
construct

•  Your goal is to minimize the number of changes made to the
serial program.

53

Example: Pi with a loop and a reduction
#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum = 0.0;
 step = 1.0/(double) num_steps;
 #pragma omp parallel
 {
 double x;
 #pragma omp for reduction(+:sum)

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }

 }
 pi = step * sum;

}

Create a scalar local to each thread to hold
value of x at the center of each interval

Create a team of threads …
without a parallel construct, you’ll
never have more than one thread

Break up loop iterations
and assign them to
threads … setting up a
reduction into sum. Note
… the loop index is local to
a thread by default.

Results*: pi with a loop and a reduction

54

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st
SPMD

1st
SPMD
padded

SPMD
critical

PI Loop

1 1.86 1.86 1.87 1.91

2 1.03 1.01 1.00 1.02

3 1.08 0.69 0.68 0.80

4 0.97 0.53 0.53 0.68

User-defined reductions (UDR)

•  As of 3.1, you cannot do reductions on objects or structures.
•  UDR extensions in 4.0 add support for this.
•  Can use declare reduction directive to define new reduction

operators
•  Specifies a name for the operator, the type(s) to which it

applies, a combiner function and an identity expression to
initialize the local copies

•  New operators can then be used in a reduction clause
•  More details later

55

4.0

56

Outline

•  Introduction to OpenMP
•  Creating Threads
•  Synchronization
•  Parallel Loops
•  Synchronize single masters and stuff
•  Data environment
•  Tasks
•  Memory model
•  Threadprivate Data
•  Recent additions and future OpenMP directions
•  Challenge Problems

57

Synchronization: Barrier

•  Barrier: Each thread waits until all threads arrive.

double A[big], B[big], C[big];

#pragma omp parallel
{

 int id=omp_get_thread_num();
 A[id] = big_calc1(id);

#pragma omp barrier
#pragma omp for

 for(i=0;i<N;i++){C[i]=big_calc3(i,A);}
#pragma omp for nowait

 for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }
 A[id] = big_calc4(id);

} implicit barrier at the end
of a parallel region

implicit barrier at the end of a for
worksharing construct

no implicit barrier
due to nowait

58

Master construct

•  The master construct denotes a structured block that is only
executed by the master thread.

•  The other threads just skip it (no synchronization is implied).

#pragma omp parallel
{

 do_many_things();
#pragma omp master

 { exchange_boundaries(); }
#pragma omp barrier

 do_many_other_things();
}

59

Single worksharing construct

•  The single construct denotes a block of code that is
executed by only one thread (not necessarily the master
thread).

•  A barrier is implied at the end of the single block (can
remove the barrier with a nowait clause).

#pragma omp parallel
{

 do_many_things();
#pragma omp single

 { exchange_boundaries(); }
 do_many_other_things();

}

60

Sections worksharing construct
•  The Sections worksharing construct gives a different

structured block to each thread.

#pragma omp parallel
{

 #pragma omp sections
 {
 #pragma omp section
 X_calculation();
 #pragma omp section

 y_calculation();
 #pragma omp section

 z_calculation();
 }

}

By default, there is a barrier at the end of the “omp sections”.
Use the “nowait” clause to turn off the barrier.

61

Synchronization: Lock routines
•  Simple Lock routines:
– A simple lock is available if it is unset.

– omp_init_lock(), omp_set_lock(),
omp_unset_lock(), omp_test_lock(), omp_destroy_lock()

•  Nested Locks
– A nested lock is available if it is unset or if it is set but owned by

the thread executing the nested lock function
– omp_init_nest_lock(), omp_set_nest_lock(),

omp_unset_nest_lock(), omp_test_nest_lock(),
omp_destroy_nest_lock()

Note: a thread always accesses the most recent copy of the lock,
so you don’t need to use a flush on the lock variable.

A lock implies a
memory fence (a
“flush”) of all thread
visible variables

62

Synchronization: Simple locks
•  Example: conflicts are rare, but to play it safe, we must assure mutual

exclusion for updates to histogram elements.

#pragma omp parallel for
 for(i=0;i<NBUCKETS; i++){
 omp_init_lock(&hist_locks[i]); hist[i] = 0;
 }
 #pragma omp parallel for
 for(i=0;i<NVALS;i++){
 ival = (int) sample(arr[i]);
 omp_set_lock(&hist_locks[ival]);
 hist[ival]++;
 omp_unset_lock(&hist_locks[ival]);
 }

for(i=0;i<NBUCKETS; i++)
 omp_destroy_lock(&hist_locks[i]);

Free-up storage when done.

One lock per element of hist

Enforce mutual
exclusion on update
to hist array

63

Runtime library routines

•  Runtime environment routines:
– Modify/Check the number of threads
– omp_set_num_threads(), omp_get_num_threads(),

omp_get_thread_num(), omp_get_max_threads()
– Are we in an active parallel region?
– omp_in_parallel()

– Do you want the system to vary the number of threads dynamically
from one parallel construct to another?
– omp_set_dynamic(), omp_get_dynamic();

– How many processors in the system?
– omp_num_procs()

…plus a few less commonly used routines.

64

Runtime Library routines

•  To use a known, fixed number of threads in a program,
(1) tell the system that you don’t want dynamic adjustment of the
number of threads, (2) set the number of threads, then (3) save the
number you got.

#include <omp.h>
void main()
{ int num_threads;
 omp_set_dynamic(0);
 omp_set_num_threads(omp_num_procs());
 #pragma omp parallel
 { int id= omp_get_thread_num();
 #pragma omp single
 num_threads = omp_get_num_threads();
 do_lots_of_stuff(id);
 }
}

Protect this op since Memory
stores are not atomic

Request as many threads as
you have processors.

Disable dynamic adjustment of the
number of threads.

Even in this case, the system may give you fewer threads
than requested. If the precise # of threads matters, test
for it and respond accordingly.

65

Environment Variables

•  Set the default number of threads to use.
– OMP_NUM_THREADS int_literal

•  Control how “omp for schedule(RUNTIME)” loop iterations
are scheduled.

– OMP_SCHEDULE “schedule[, chunk_size]”
•  Process binding is enabled if this variable is true … i.e., if

true the runtime will not move threads around between
processors.

– OMP_PROC_BIND true | false

… Plus several less commonly used environment variables.

66

Outline

•  Introduction to OpenMP
•  Creating Threads
•  Synchronization
•  Parallel Loops
•  Synchronize single masters and stuff
•  Data environment
•  Tasks
•  Memory model
•  Threadprivate Data
•  Recent additions and future OpenMP directions
•  Challenge Problems

67

Data environment:
Default storage attributes

• Shared memory programming model:
– Most variables are shared by default

• Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE variables
– C: File scope variables, static
– Both: dynamically allocated memory (ALLOCATE, malloc, new)

• But not everything is shared...
– Stack variables in subprograms(Fortran) or functions(C) called

from parallel regions are PRIVATE
– Automatic variables within a statement block are PRIVATE.

68

 double A[10];
 int main() {

 int index[10];
 #pragma omp parallel

 work(index);
 printf(“%d\n”, index[0]);

 }

extern double A[10];
void work(int *index) {
 double temp[10];
 static int count;
 ...
}

Data sharing: Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are
shared by all threads.

temp is local to each
thread

69

Data sharing:
Changing storage attributes

•  One can selectively change storage attributes for constructs
using the following clauses*
– SHARED
– PRIVATE
– FIRSTPRIVATE

•  The final value of a private variable inside a parallel loop can
be transmitted to the shared variable outside the loop with:
– LASTPRIVATE

•  The default attributes can be overridden with:
– DEFAULT (PRIVATE | SHARED | NONE)

All the clauses on this page apply
to the OpenMP construct NOT to
the entire region.

*All data clauses apply to parallel constructs and worksharing
constructs except “shared”, which only applies to parallel constructs

DEFAULT(PRIVATE) is Fortran only

70

Data sharing: Private clause

void wrong() {
 int tmp = 0;
#pragma omp parallel for private(tmp)
 for (int j = 0; j < 1000; ++j)

 tmp += j;
 printf(“%d\n”, tmp);
}

•  private(var) creates a new local copy of var for each thread.
–  The value of the private copies is uninitialized
–  The value of the original variable is unchanged after the region

tmp was not
initialized

tmp is 0 here

71

Data sharing: Private clause
When is the original variable valid?

int tmp;
void danger() {
 tmp = 0;
#pragma omp parallel private(tmp)
 work();
 printf(“%d\n”, tmp);
}

•  The original variable’s value is unspecified if it is referenced
outside of the construct
–  Implementations may reference the original variable or a copy ….. a

dangerous programming practice!
– For example, consider what would happen if the compiler inlined

work()?

extern int tmp;
void work() {
 tmp = 5;
}

unspecified which
copy of tmp tmp has unspecified value

Firstprivate clause

•  Variables initialized from a shared variable
•  C++ objects are copy-constructed

72

incr = 0;
#pragma omp parallel for firstprivate(incr)
for (i = 0; i <= MAX; i++) {

 if ((i%2)==0) incr++;
 A[i] = incr;

}

Each thread gets its own copy of
incr with an initial value of 0

Lastprivate clause

•  Variables update a shared variable using value from the
(logically) last iteration

•  C++ objects are updated as if by assignment

void sq2(int n, double *lastterm)
{
 double x; int i;
 #pragma omp parallel for lastprivate(x)
 for (i = 0; i < n; i++){
 x = a[i]*a[i] + b[i]*b[i];
 b[i] = sqrt(x);
 }
 *lastterm = x;
}

73

“x” has the value it held for
the “last sequential” iteration
(i.e., for i=(n-1))

74

Data sharing:
A data environment test

•  Consider this example of PRIVATE and FIRSTPRIVATE

•  Are A,B,C local to each thread or shared inside the parallel region?
•  What are their initial values inside and values after the parallel region?

	
variables: A = 1,B = 1, C = 1
#pragma omp parallel private(B) firstprivate(C)

Inside this parallel region ...
l  “A” is shared by all threads; equals 1
l  “B” and “C” are local to each thread.

–  B’s initial value is undefined
–  C’s initial value equals 1

Following the parallel region ...
l  B and C revert to their original values of 1
l  A is either 1 or the value it was set to inside the parallel region

75

Data sharing: Default clause
•  The default storage attribute is DEFAULT(SHARED)

(so no need to use it)
– Exception: #pragma omp task

•  To change default: DEFAULT(PRIVATE)
– each variable in the construct is made private as if specified in a

private clause
– mostly saves typing

•  DEFAULT(NONE): no default for variables in static
extent. Must list storage attribute for each variable in
static extent. Good programming practice!

Only the Fortran API supports default(private).

C/C++ only has default(shared) or default(none).

76

Data sharing: Default clause example

 itotal = 1000
C$OMP PARALLEL DEFAULT(PRIVATE) SHARED(itotal)
 np = omp_get_num_threads()
 each = itotal/np
 ………
C$OMP END PARALLEL

 itotal = 1000
C$OMP PARALLEL PRIVATE(np, each)
 np = omp_get_num_threads()
 each = itotal/np
 ………
C$OMP END PARALLEL These two code

fragments are
equivalent

77

Exercise 5: Mandelbrot set area

•  The supplied program (mandel.c) computes the area of a
Mandelbrot set.

•  The program has been parallelized with OpenMP, but we
were lazy and didn’t do it right.

•  Find and fix the errors (hint … the problem is with the data
environment).

•  Once you have a working version, try to optimize the
program.
– Try different schedules on the parallel loop.
– Try different mechanisms to support mutual exclusion … do the

efficiencies change?

78

Outline

•  Introduction to OpenMP
•  Creating Threads
•  Synchronization
•  Parallel Loops
•  Synchronize single masters and stuff
•  Data environment
•  Tasks
•  Memory model
•  Threadprivate Data
•  Recent additions and future OpenMP directions
•  Challenge Problems

What are tasks?

•  Tasks are independent units of work
•  Tasks are composed of:
– Code to execute
– A data environment
–  Internal control variables (ICV)

•  Threads are assigned to perform the
work of each task

•  The runtime system will either:
– Defer tasks for later execution
– Execute the tasks immediately

Serial Parallel

How tasks work

•  The task construct
 defines a section of code

•  Inside a parallel region, a thread encountering a task

construct will package up the task for execution
•  Some thread in the parallel region will execute the task at

some point in the future
•  Tasks can be nested: i.e., a task may itself generate tasks

80

#pragma omp task
 {
 ...some code
 }

Task construct – Explicit task view
•  A team of threads is created at

the omp parallel construct
•  A single thread is chosen to

execute the while loop – lets
call this thread “L”

•  Thread L operates the while
loop, creates tasks, and fetches
next pointers

•  Each time L encounters the
task construct it generates a
new task

•  Each task is assigned to a
thread that will execute it

•  All tasks complete at the barrier
at the end of the single
construct

#pragma omp parallel
{
 #pragma omp single
 { // block 1
 node * p = head;
 while (p) { //block 2
 #pragma omp task firstprivate(p)
 process(p);
 p = p->next; //block 3
 }
 }
}

Why are tasks useful?

#pragma omp parallel
{
 #pragma omp single
 { // block 1
 node * p = head;
 while (p) { //block 2
 #pragma omp task
 process(p);
 p = p->next; //block 3
 }
 }
}

Have potential to parallelize irregular patterns and recursive function calls

Block 1

Block 2���
Task 1

Block 2���
Task 2

Block 2���
Task 3

Block 3

Block 3

Tim
e

Single
Threaded

Block 1

Block 3

Block 3

Thr1 Thr2 Thr3 Thr4

Block 2���
Task 2

Block 2���
Task 1

Block 2���
Task 3

Time
Saved

Idle

Idle

When are tasks guaranteed to complete
•  Tasks are guaranteed to be complete at thread barriers:

#pragma omp barrier
– applies to all tasks generated in the current parallel region up

to the barrier

• … or task barriers
#pragma omp taskwait

– wait until all tasks generated in the current task have
completed. Applies only to “sibling” tasks, not “descendants”

• … or at the end of a taskgroup region
#pragma omp taskgroup

– wait until all tasks created within the taskgroup have
completed; Applies to “descendants” (and “siblings”)

83

Task completion example

#pragma omp parallel
{

#pragma omp for

for(int i=0;i<N;i++){
 #pragma omp task
 foo();
 }
#pragma omp single
{

for(int i=0;i<N;i++)

 #pragma omp task
 bar();

}
}

N foo tasks created
here by each thread

All foo tasks guaranteed to be
completed by the implied

barrier at the end of the loop

N bar task
created here

All bar tasks guaranteed to
be completed here

int fib (int n)
{
int x,y;
 if (n < 2) return n;
#pragma omp task
 x = fib(n-1);
#pragma omp task
 y = fib(n-2);
#pragma omp taskwait
 return x+y;
}
int main()
{ int NN = 5000;
 #pragma omp parallel
 {
 #pragma omp single
 fib(NN);
 }
}

Data scoping with tasks: Fibonacci example

n is private (C is “call by value” so n is on the stack
and therefore private)

What’s wrong here?

x is a private variable
y is a private variable

x and y are private and thus their values are
undefined outside the tasks that compute their values

int fib (int n)
{
int x,y;
 if (n < 2) return n;
#pragma omp task shared (x)
 x = fib(n-1);
#pragma omp task shared(y)
 y = fib(n-2);
#pragma omp taskwait
 return x+y
}
Int main()
{ int NN = 5000;
 #pragma omp parallel
 {
 #pragma omp single
 fib(NN);
 }
}

Data scoping with tasks: Fibonacci example

Solution: make x and y shared
so they have well defined values
that are still available after the
tasks complete

Data scoping with tasks

•  The notions of shared and private variables can be a bit
confusing with respect to tasks

•  A good way to think of it is like this:
–  If a variable is shared on a task construct, the references to it inside

the construct are to the storage with that name at the point where the
task was encountered
–  If a variable is private on a task construct, the references to it inside

the construct are to new uninitialized storage that is created when the
task is executed
–  If a variable is firstprivate on a construct, the references to it inside the

construct are to new storage that is created and initialized with the
value of the existing storage of that name when the task is
encountered

87

Data scoping with tasks

•  The behavior you want for tasks is usually firstprivate,
because the task may not be executed until later (and
variables may have gone out of scope)
– Variables that are private when the task construct is encountered are

firstprivate by default

•  Variables that are shared in all constructs starting from the
innermost enclosing parallel construct are shared by default

•  Use default(none) to help avoid races!!!

88

List ml; //my_list
Element *e;
#pragma omp parallel
#pragma omp single
{
 for(e=ml->first;e;e=e->next)
 #pragma omp task
 process(e);
}

Data scoping with tasks: List traversal example

What’s wrong here?

Possible data race!
Shared variable e

updated by multiple tasks
89

List ml; //my_list
Element *e;
#pragma omp parallel
#pragma omp single
{
 for(e=ml->first;e;e=e->next)
 #pragma omp task firstprivate(e)
 process(e);
}

Data scoping with tasks: List traversal example

Solutions: Make “e” firstprivate so each task
has its own, well-defined private copy of e

90

List ml; //my_list
Element *e;
#pragma omp parallel
#pragma omp single private(e)
{
 for(e=ml->first;e;e=e->next)
 #pragma omp task
 process(e);
}

Data scoping with tasks: List traversal example

Solutions: Make “e” private on single … it will
then be firstprivate by default on subsequent task
constructs … thus giving each task has its own,
well-defined private copy of e

91

92

Exercise 6: Pi with tasks

•  Consider the program Pi_recur.c. This program implements
a recursive algorithm version of the program for computing pi
– Parallelize this program using OpenMP tasks

Task switching

•  Certain constructs have task scheduling points at defined
locations within them

•  When a thread encounters a task scheduling point, it is
allowed to suspend the current task and execute another
(called task switching)

•  It can then return to the original task and resume

93

 #pragma omp single
 {
 for (i=0; i<ONEZILLION; i++)
 #pragma omp task
 process(item[i]);
 }

 •  Risk of generating too many tasks

•  Generating task will have to suspend for a while
•  With task switching, the executing thread can:
– execute an already generated task (draining the “task pool”)
– execute the encountered task

94

Task switching

When are tasks guaranteed to complete

• … or at the end of taskgroup construct
#pragma omp taskgroup

 {
 #pragma omp task
 {
 do_tasky_stuff()
 }
 }
– wait at end of construct until all tasks created in the construct,

including descendants, have completed.

95

Might create nested tasks

4.0

Task dependencies

!$omp task depend(type:list)
where type is in, out or inout and list is a list of variables.
–  list may contain subarrays: OpenMP 4.0 includes a syntax for C/C++
–  in: the generated task will be a dependent task of all previously

generated sibling tasks that reference at least one of the list items in
an out or inout clause
– out or inout: the generated task will be a dependent task of all

previously generated sibling tasks that reference at least one of the
list items in an in, out or inout clause

96

4.0

Task dependencies example

#pragma omp task depend (out:a)
 { ... } //writes a
#pragma omp task depend (out:b)
 { ... } //writes b
#pragma omp task depend (in:a,b)
 { ... } //reads a and b

•  The first two tasks can execute in parallel
•  The third task cannot start until the first two are complete

97

4.0

Using tasks

•  Getting the data attribute scoping right can be quite tricky
– Default scoping rules different from other constructs
– As ever, using default(none) is a good idea

•  Don’t use tasks for things already well supported by OpenMP
– e.g., standard do/for loops
– the overhead of using tasks is greater

•  Don’t expect miracles from the runtime
– best results usually obtained where the user controls the

number and granularity of tasks

98

Parallel list traversal again

#pragma omp parallel
{
 #pragma omp single private(p)
 {
 p = listhead ;
 while (p) {
 #pragma omp task firstprivate(p)
 {
 process (p,nitems);
 }
 for (i=0; (i<nitems)&&p; i++){
 p=next (p) ;
 }
 }
 }
}

process
nitems at
a time

skip nitems ahead
in the list

99

Controlling tasks

•  Two things can happen with a task:
–  included (executed now by the thread that encounters them)
– deferred (executed by some thread independently of generating task)
–  undeferred (completes execution before the generating task continues)

•  The task construct can take an if(expr)clause, which if the
expression evaluates to false, means the task will be undeferred

•  The task construct can take a final(expr)clause, which if the
expression evaluates to true, means any tasks generated inside
this task will be included

•  The task construct can take a mergeable clause, which
indicates it can be safely executed by reusing its parent data
environment; most useful if used in conjunction with final

100�

101

Outline

•  Introduction to OpenMP
•  Creating Threads
•  Synchronization
•  Parallel Loops
•  Synchronize single masters and stuff
•  Data environment
•  Tasks
•  Memory model
•  Threadprivate Data
•  Recent additions and future OpenMP directions
•  Challenge Problems

102

OpenMP memory model

l  Multiple copies of data may be present in various levels of cache, or in registers

l  OpenMP supports a shared memory model
l  All threads share an address space, but it can get complicated:

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

a

a

. . .

103

OpenMP and relaxed consistency

•  OpenMP supports a relaxed-consistency
shared memory model
– Threads can maintain a temporary view of shared memory

that is not consistent with that of other threads
– These temporary views are made consistent only at certain

points in the program
– The operation that enforces consistency is called the flush operation

104

Flush operation

•  Defines a sequence point at which a thread is guaranteed to
see a consistent view of memory
– All previous read/writes by this thread have completed and are visible

to other threads
– No subsequent read/writes by this thread have occurred
– A flush operation is analogous to a fence in other shared memory

APIs

105

Synchronization: flush example

l  Flush forces data to be updated in memory so other threads see the most
recent value

double A;

A = compute();

#pragma omp flush(A)

 // flush to memory to make sure other
 // threads can pick up the right value

Note: OpenMP’s flush is analogous to a fence in other shared memory APIs

106

Flush and synchronization

•  A flush operation is implied by OpenMP synchronizations,
e.g.,
– at entry/exit of parallel regions
– at implicit and explicit barriers
– at entry/exit of critical regions
– whenever a lock is set or unset
….
(but not at entry to worksharing regions or entry/exit of master regions)

107

What is the BIG DEAL with flush?

•  Compilers routinely reorder instructions implementing a
program
– Can better exploit the functional units, keep the machine busy, hide

memory latencies, etc.
•  Compiler generally cannot move instructions:
– Past a barrier
– Past a flush on all variables

•  But it can move them past a flush with a list of variables so
long as those variables are not accessed

•  Keeping track of consistency when flushes are used can be
confusing … especially if “flush(list)” is used.

Note: the flush operation does not actually synchronize different
threads. It just ensures that a thread’s variables are made
consistent with main memory

108

Example: prod_cons.c

 int main()
 {
 double *A, sum, runtime; int flag = 0;

 A = (double *) malloc(N*sizeof(double));

 runtime = omp_get_wtime();

 fill_rand(N, A); // Producer: fill an array of data

 sum = Sum_array(N, A); // Consumer: sum the array

 runtime = omp_get_wtime() - runtime;

 printf(" In %lf secs, The sum is %lf \n",runtime,sum);
 }

•  Parallelize a producer/consumer program
– One thread produces values that another thread consumes.

– The key is to
implement
pairwise
synchronization
between threads

– Often used with a
stream of
produced values
to implement
“pipeline
parallelism”

109

Pairwise synchronizaion in OpenMP

•  OpenMP lacks synchronization constructs that work between
pairs of threads.

•  When needed, you have to build it yourself.
•  Pairwise synchronization
– Use a shared flag variable
– Reader spins waiting for the new flag value
– Use flushes to force updates to and from memory

110

Example: Producer/consumer
int main()
{
 double *A, sum, runtime; int numthreads, flag = 0;
 A = (double *)malloc(N*sizeof(double));
 #pragma omp parallel sections
 {
 #pragma omp section
 {
 fill_rand(N, A);
 #pragma omp flush
 flag = 1;
 #pragma omp flush (flag)
 }
 #pragma omp section
 {
 #pragma omp flush (flag)
 while (flag == 0){
 #pragma omp flush (flag)
 }
 #pragma omp flush
 sum = Sum_array(N, A);
 }
 }
}

Use flag to Signal when the
“produced” value is ready

Flush forces refresh to memory;
guarantees that the other thread
sees the new value of A

Notice you must put the flush inside the
while loop to make sure the updated flag
variable is seen

Flush needed on both “reader” and “writer”
sides of the communication

The problem is this program technically has a
race … on the store and later load of flag

The OpenMP 3.1 atomics (1 of 2)

•  Atomic was expanded to cover the full range of common scenarios
where you need to protect a memory operation so it occurs atomically:

 # pragma omp atomic [read | write | update | capture]

111

•  Atomic can protect loads
 # pragma omp atomic read
 v = x;

•  Atomic can protect stores
 # pragma omp atomic write
 x = expr;

•  Atomic can protect updates to a storage location (this is the default
behavior … i.e. when you don’t provide a clause)

 # pragma omp atomic update
 x++; or ++x; or x--; or –x; or
 x binop= expr; or x = x binop expr;

This is the
original OpenMP

atomic

The OpenMP 3.1 atomics (2 of 2)
•  Atomic can protect the assignment of a value (its capture) AND an

associated update operation:
 # pragma omp atomic capture
 statement or structured block

112

•  Where the statement is one of the following forms:
 v = x++; v = ++x; v = x--; v = –x; v = x binop expr;

•  Where the structured block is one of the following forms:

{v = x; x binop = expr;} {x binop = expr; v = x;}
{v=x; x=x binop expr;} {X = x binop expr; v = x;}
{v = x; x++;} {v=x; ++x:}
{++x; v=x:} {x++; v = x;}
{v = x; x--;} {v= x; --x;}
{--x; v = x;} {x--; v = x;}

The capture semantics in atomic were added to map onto common hardware
supported atomic operations and to support modern lock free algorithms

Atomics and synchronization flags

113

int main()
{ double *A, sum, runtime;
 int numthreads, flag = 0, flg_tmp;
 A = (double *)malloc(N*sizeof(double));
 #pragma omp parallel sections
 {
 #pragma omp section
 { fill_rand(N, A);
 #pragma omp flush
 #pragma atomic write
 flag = 1;
 #pragma omp flush (flag)
 }
 #pragma omp section
 { while (1){
 #pragma omp flush(flag)
 #pragma omp atomic read
 flg_tmp= flag;
 if (flg_tmp==1) break;
 }
 #pragma omp flush
 sum = Sum_array(N, A);
 }
 }
}

This program is truly
race free … the reads
and writes of flag are
protected so the two
threads cannot conflict

Still painful and error
prone due to all of the
flushes that are required

OpenMP 4.0 Atomic: Sequential consistency

•  Sequential consistency:
– The order of loads and stores in a race-free program appear in some

interleaved order and all threads in the team see this same order.

•  OpenMP 4.0 added an optional clause to atomics
– #pragma omp atomic [read | write | update | capture] [seq_cst]

•  In more pragmatic terms:
–  If the seq_cst clause is included, OpenMP adds a flush without an

argument list to the atomic operation so you don’t need to.

•  In terms of the C++’11 memory model:
– Use of the seq_cst clause makes atomics follow the sequentially

consistent memory order.
– Leaving off the seq_cst clause makes the atomics relaxed.

114

4.0

Advice to programmers: save yourself a world of hurt … let OpenMP
take care of your flushes for you whenever possible … use seq_cst

Atomics and synchronization flags (4.0)

115

int main()
{ double *A, sum, runtime;
 int numthreads, flag = 0, flg_tmp;
 A = (double *)malloc(N*sizeof(double));
 #pragma omp parallel sections
 {
 #pragma omp section
 { fill_rand(N, A);

 #pragma atomic write seq_cst
 flag = 1;

 }
 #pragma omp section
 { while (1){

 #pragma omp atomic read seq_cst
 flg_tmp= flag;
 if (flg_tmp==1) break;
 }

 sum = Sum_array(N, A);
 }
 }
}

This program is truly
race free … the reads
and writes of flag are
protected so the two
threads cannot conflict –
and you do not use flush

116

Outline

•  Introduction to OpenMP
•  Creating Threads
•  Synchronization
•  Parallel Loops
•  Synchronize single masters and stuff
•  Data environment
•  Tasks
•  Memory model
•  Threadprivate Data
•  Recent additions and future OpenMP directions
•  Challenge Problems

117

Data sharing: Threadprivate

•  Makes global data private to a thread
– Fortran: COMMON blocks
– C: File scope and static variables, static class members

•  Different from making them PRIVATE
– with PRIVATE global variables are masked.
– THREADPRIVATE preserves global scope within each thread

•  Threadprivate variables can be initialized using COPYIN
or at time of definition (using language-defined
initialization capabilities)

118

A threadprivate example (C)

int counter = 0;
#pragma omp threadprivate(counter)

int increment_counter()
{
 counter++;
 return (counter);
}

Use threadprivate to create a counter for each
thread.

119

Data copying: Copyin

 parameter (N=1000)
 common/buf/A(N)
!$OMP THREADPRIVATE(/buf/)

C Initialize the A array
 call init_data(N,A)

!$OMP PARALLEL COPYIN(A)

 … Now each thread sees threadprivate array A initialized
 … to the global value set in the subroutine init_data()

!$OMP END PARALLEL

end

You initialize threadprivate data using a copyin
clause.

120

Data copying: Copyprivate

#include <omp.h>
void input_parameters (int, int); // fetch values of input parameters
void do_work(int, int);

void main()
{
 int Nsize, choice;

 #pragma omp parallel private (Nsize, choice)
 {
 #pragma omp single copyprivate (Nsize, choice)
 input_parameters (*Nsize, *choice);

 do_work(Nsize, choice);
 }
}

Used with a single region to broadcast values of privates from one member of a
team to the rest of the team

121

Outline

•  Introduction to OpenMP
•  Creating Threads
•  Synchronization
•  Parallel Loops
•  Synchronize single masters and stuff
•  Data environment
•  Tasks
•  Memory model
•  Threadprivate Data
•  Recent additions and future OpenMP directions
•  Challenge Problems

122

OpenMP 4.0 ratified July 2013

•  End of a long road? A brief rest stop along the way…
•  Addresses several major open issues for OpenMP
•  Do not break existing code unnecessarily
•  Includes 106 passed tickets
– Focused on major tickets initially
– Builds on two comment drafts (“RC1” and “RC2”)
– Many small tickets after RC2, a few large ones

123

Overview of major 4.0 additions

•  Device constructs
•  SIMD constructs
•  Cancellation
•  Task dependences and task groups
•  Thread affinity control
•  User-defined reductions
•  Initial support for Fortran 2003
•  Support for array sections (including in C and C++)
•  Sequentially consistent atomics
•  Display of initial OpenMP internal control variables

124

OpenMP 4.0 provides support
for a wide range of devices

•  Use target directive to offload a region

•  Creates new data environment from enclosing device data
environment

•  Clauses support data movement and conditional offloading
–  device supports offload to a device other than default
– Does not assume copies are made – memory may be shared with

host
–  Does not copy if present in enclosing device data environment
–  Does not copy if present in enclosing device data environment

–  if supports running on host if amount of work is small

•  Other constructs support device data environment
–  target data places map list items in device data environment
–  target update ensures variable is consistent in host and device

#pragma omp target [clause [[,] clause] …]

125

Several other device constructs
support full-featured code

•  Use target declare directive to create device versions

– Can be applied to functions and global variables
– Required for UDRs that use functions and execute on device

• teams directive creates multiple teams in a target region

– Work across teams only synchronized at end of target region
– Useful for GPUs (corresponds to thread blocks)

•  Use distribute directive to run loop across multiple teams

•  Several combined/composite constructs simplify device use

#pragma omp declare target

#pragma omp teams [clause [[,] clause] …]

#pragma omp distribute [clause [[,] clause] …]

Example: OpenMP support for devices
Jacobi iteration
#pragma omp target data map(A, Anew)
while (err>tol && iter < iter_max){
 err = 0.0;
 #pragma target teams
 #pragma omp parallel for reduction(max:err)
 for(int j=1; j< n-1; j++){
 for(int i=1; i<M-1; i++){
 Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+
 A[j-1][i] + A[j+1][i]);
 err = max(err,abs(Anew[j][i] – A[j][i]));
 }
 }
 #pragma omp target teams
 #pragma omp parallel for
 for(int j=1; j< n-1; j++){
 for(int i=1; i<M-1; i++){
 A[j][i] = Anew[j]i];
 }
 }
 iter ++;
}

Create a data region on the
device. Map A and Anew

onto the target device

Copy A back out to host …
but only once

The "target teams”
construct tells the

compiler to pick the
number of teams … which
translates to thread blocks

for CUDA.

127

OpenMP 4.0 provides
portable SIMD constructs
•  Use simd directive to indicate a loop should be SIMDized

•  Execute iterations of following loop in SIMD chunks
– Region binds to the current task, so loop is not divided across threads
–  SIMD chunk is set of iterations executed concurrently by a SIMD lanes

•  Creates a new data environment
•  Clauses control data environment, how loop is partitioned
–  safelen(length) limits the number of iterations in a SIMD chunk
–  linear lists variables with a linear relationship to the iteration space
–  aligned specifies byte alignments of a list of variables
–  private, lastprivate, reduction, collapse - usual meanings

#pragma omp simd [clause [[,] clause] …]

128

The declare simd construct
generates SIMD functions

•  Compile library and use functions in a SIMD loop

– Creates implicit tasks of parallel region
– Divides loop into SIMD chunks
–  Schedules SIMD chunks across implicit tasks
–  Loop is fully SIMDized by using SIMD versions of functions

#pragma omp simd notinbranch
float min (float a, float b) {
 return a < b ? a : b; }

#pragma omp simd notinbranch
float distsq (float x, float y) {
 return (x − y) ∗ (x − y); }

void minex (float *a, float *b, float *c, float *d) {
 #pragma omp parallel for simd
 for (i = 0; i < N; i++)
 d[i] = min (distsq(a[i], b[i]), c[i]);
}

129

A simple UDR example

•  Declare the reduction operator

•  Use the reduction operator in a reduction clause

•  Private copies created for a reduction are initialized to the
identity that was specified for the operator and type
– Default identity defined if identity clause not present

•  Compiler uses combiner to combine private copies
–  omp_out refers to private copy that holds combined value
–  omp_in refers to the other private copy

#pragma omp declare reduction (merge : std::vector<int> :
 omp_out.insert(omp_out.end(), omp_in.begin(), omp_in.end()))

void schedule (std::vector<int> &v, std::vector<int> &filtered) {
 #pragma omp parallel for reduction (merge : filtered)
 for (std:vector<int>::iterator it = v.begin(); it < v.end(); it++)
 if (filter(*it)) filtered.push_back(*it);
}

n  Declare the reduction operator

n  Use the reduction operator in a reduction clause

n  Private copies created for a reduction are initialized to the identity
that was specified for the operator and type
à Default identity defined if identity clause not present

n  Compiler uses combiner to combine private copies
à omp_out refers to private copy that holds combined value
à omp_in refers to the other private copy

A simple UDR example

#pragma omp declare reduction (merge : std::vector<int> :
 omp_out.insert(omp_out.end(), omp_in.begin(), omp_in.end()))

void schedule (std::vector<int> &v, std::vector<int> &filtered) {
 #pragma omp parallel for reduction (merge : filtered)
 for (std:vector<int>::iterator it = v.begin(); it < v.end(); it++)
 if (filter(*it)) filtered.push_back(*it);
}

131

OpenMP 4.0 includes initial
support for Fortran 2003

•  Added to list of base language versions
•  Have a list of unsupported Fortran 2003 features
–  List initially included 24 items (some big, some small)
–  List has been reduced to 14 items
–  List in specification reflects approximate OpenMP Next priority
–  Priorities determined by importance and difficulty

•  Plan: Reduce list and ideally provide full support in 5.0
– Many small changes throughout; Support:
–  Procedure pointers
–  Renaming operators on the USE statement
–  ASSOCIATE construct
–  VOLATILE attribute
–  Structure constructors

– Will support Fortran 2003 object-oriented features next
–  The biggest issue
–  Considering concurrent reexamination of C++ support

132

Plan for OpenMP specifications
•  OpenMP Tools Interface Technical Report
– Released in March 2014
– Working towards adoption in 5.0

•  TR3: Initial OpenMP 4.1 Comment Draft
– Changes adopted in time frame of SC14
–  Provided clear guidance to begin 4.1 implementations

•  Final OpenMP 4.1 Comment Draft: Released Late Last Month
•  OpenMP 4.1
– Clarifications, refinements and minor extensions to existing

specification
– Major focus is device construct refinements
– Do not break existing code
– Will be released by SC15

•  OpenMP 5.0
–  Address several major open issues for OpenMP
–  Expect less significant advance than 4.0 from 3.1/3.0
– Do not break existing code unnecessarily
–  Targeting release for SC17 (somewhat ambitious)

133

OpenMP 4.1 will include many
refinements to recent additions

•  92 tickets have been passed
– Many refinements to device support
– Reflects improved efficiency due to LaTex conversion

•  Many clarifications and minor enhancements
– Handled several items from Fortran 2003 list
– SIMD and tasking extensions and refinements
– Reductions for C/C++ arrays and templates
– Runtime routines to support cancelation and affinity

•  Some new features are being added
– Support for DOACROSS loops
– Can divide loop into tasks with taskloop construct

134

TR3 (initial OpenMP 4.1 comment
draft) refines device constructs

•  Adds flush to several device constructs
•  Supports unstructured data movement
•  Can now require update/assignment for map (always)
•  Improves asynchronous execution
–  In 4.0, could have a task region with only a target region
– target and other device regions are now tasks
–  By default, undeferred
– Can use nowait and depend clauses

•  Many clarifications and minor corrections

135

Final OpenMP 4.1 comment draft
further refines device constructs

• memcpy API to support manual mapping
•  Device pointers (provides interoperability with CUDA and

OpenCL libraries)
•  Mapping structure elements
•  Tweaks to device environment support, including:
– Default for scalar variables: firstprivate
– link clause for declare target construct

•  New combined constructs
•  Other miscellaneous usability features

136

More significant topics are being
considered for OpenMP 5.0

•  Updates to support latest C/C++ standards
•  More tasking advances (support for event loops)
•  General error model
•  Continued improvements to device support
•  Performance and debugging tools support
•  Interoperability and composability
•  Locality and affinity
•  Transactional memory
•  Additional looping constructs and refinements

137

Outline

•  Introduction to OpenMP
•  Creating Threads
•  Synchronization
•  Parallel Loops
•  Synchronize single masters and stuff
•  Data environment
•  Tasks
•  Memory model
•  Threadprivate Data
•  Recent additions and future OpenMP directions
•  Challenge Problems

Challenge problems

•  Long term retention of acquired skills is best supported by
“random practice”.
–  i.e., a set of exercises where you must draw on multiple facets of the

skills you are learning.

•  To support “Random Practice” we have assembled a set of
“challenge problems”

1.  Parallel molecular dynamics
2.  Monte Carlo “pi” program and parallel random number generators
3.  Optimizing matrix multiplication
4.  Traversing linked lists in different ways
5.  Recursive matrix multiplication algorithms

138

139

Challenge 1: Molecular dynamics

•  The code supplied is a simple molecular dynamics
simulation of the melting of solid argon

•  Computation is dominated by the calculation of force pairs in
subroutine forces (in forces.c)

•  Parallelise this routine using a parallel for construct and
atomics; think carefully about which variables should be
SHARED, PRIVATE or REDUCTION variables

•  Experiment with different schedule kinds

140

Challenge 1: MD (cont.)

•  Once you have a working version, move the parallel region
out to encompass the iteration loop in main.c
– Code other than the forces loop must be executed by a single thread

(or workshared).
– How does the data sharing change?

•  The atomics are a bottleneck on most systems.
– This can be avoided by introducing a temporary array for the force

accumulation, with an extra dimension indexed by thread number
– Which thread(s) should do the final accumulation into f?

141

Challenge 1 MD: (cont.)

•  Another option is to use locks
– Declare an array of locks
– Associate each lock with some subset of the particles
– Any thread that updates the force on a particle must hold the

corresponding lock
– Try to avoid unnecessary acquires/releases
– What is the best number of particles per lock?

142

Challenge 2: Monte Carlo calculations
Using random numbers to solve tough problems

•  Sample a problem domain to estimate areas, compute probabilities,
find optimal values, etc.

•  Example: Computing π with a digital dart board:

l  Throw darts at the circle/square.
l  Chance of falling in circle is

proportional to ratio of areas:
Ac = r2 * π
As = (2*r) * (2*r) = 4 * r2

P = Ac/As = π /4
l  Compute π by randomly

choosing points; π is four times
the fraction that falls in the circle

2 * r

N= 10 π = 2.8

N=100 π = 3.16

N= 1000 π = 3.148

143

Challenge 2: Monte Carlo pi (cont)

•  We provide three files for this exercise
– pi_mc.c: the Monte Carlo method pi program
–  random.c: a simple random number generator
–  random.h: include file for random number generator

•  Create a parallel version of this program without changing
the interfaces to functions in random.c
– This is an exercise in modular software … why should a user of your

parallel random number generator have to know any details of the
generator or make any changes to how the generator is called?
– The random number generator must be thread-safe.

•  Extra Credit:
– Make your random number generator numerically correct (non-

overlapping sequences of pseudo-random numbers).

144

Challenge 3: Matrix multiplication

•  Parallelize the matrix multiplication program in the file
matmul.c

•  Can you optimize the program by playing with how the loops
are scheduled?

•  Try the following and see how they interact with the
constructs in OpenMP
– Cache blocking
– Loop unrolling
– Vectorization

•  Goal: Can you approach the peak performance of the
computer?

145

Challenge 4: Traversing linked lists

•  Consider the program linked.c
– Traverses a linked list, computing a sequence of Fibonacci numbers

at each node

•  Parallelize this program two different ways
1.  Use OpenMP tasks
2.  Use anything you choose in OpenMP other than tasks.

•  The second approach (no tasks) can be difficult and may
take considerable creativity in how you approach the
problem (why its such a pedagogically valuable problem)

146

Challenge 5: Recursive matrix multiplication

•  The following three slides explain how to use a recursive
algorithm to multiply a pair of matrices

•  Source code implementing this algorithm is provided in the
file matmul_recur.c

•  Parallelize this program using OpenMP tasks

Challenge 5: Recursive matrix multiplication

•  Quarter each input matrix and output matrix
•  Treat each submatrix as a single element and multiply
•  8 submatrix multiplications, 4 additions

A B C

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2

C1,1 = A1,1·B1,1 + A1,2·B2,1

C2,1 = A2,1·B1,1 + A2,2·B2,1

C1,2 = A1,1·B1,2 + A1,2·B2,2

C2,2 = A2,1·B1,2 + A2,2·B2,2

147

Challenge 5: Recursive matrix multiplication
 How to multiply submatrices?

•  Use the same routine that is computing the full matrix
multiplication
– Quarter each input submatrix and output submatrix
– Treat each sub-submatrix as a single element and multiply

A B C

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2

C111,1 = A111,1·B111,1 + A111,2·B112,1 +
 A121,1·B211,1 + A121,2·B212,1

C1,1 = A1,1·B1,1 + A1,2·B2,1

148

A1,1

A111,1 A111,2

A112,1 A112,2

B1,1

B111,1 B111,2

B112,1 B112,2

C1,1

C111,1 C111,2

C112,1 C112,2

C1,1 = A1,1·B1,1 + A1,2·B2,1

C2,1 = A2,1·B1,1 + A2,2·B2,1

C1,2 = A1,1·B1,2 + A1,2·B2,2

C2,2 = A2,1·B1,2 + A2,2·B2,2

Challenge 5: Recursive matrix multiplication
 Recursively multiply submatrices

•  Also need stopping criteria for recursion
149

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,

 double **A, double **B, double **C)

{// Dimensions: A[mf..ml][pf..pl] B[pf..pl][nf..nl] C[mf..ml][nf..nl]

// C11 += A11*B11

 matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A,B,C);

// C11 += A12*B21

 matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A,B,C);

 . . .

}

l  Need range of indices to define each submatrix to be used

150

Conclusion

•  We have now covered the full sweep of the OpenMP
specification
– We’ve left off some minor details, but we’ve covered all major topics
… remaining content you can pick up on your own

•  Download the spec to learn more … the spec is filled with
examples to support your continuing education
– www.openmp.org

•  Get involved:
– Get your organization to join the OpenMP ARB
– Work with us through cOMPunity

151

Appendices
•  Sources for additional information
•  OpenMP History
•  Solutions to exercises
– Exercise 1: hello world
– Exercise 2: Simple SPMD Pi program
– Exercise 3: SPMD Pi without false sharing
– Exercise 4: Loop level Pi
– Exercise 5: Mandelbrot Set area
– Exercise 6: Recursive pi program

•  Challenge Problems
– Challenge 1: Molecular dynamics
– Challenge 2: Monte Carlo pi and random numbers
– Challenge 3: Matrix multiplication
– Challenge 4: Linked lists
– Challenge 5: Recursive matrix multiplication

•  Fortran and OpenMP
•  Mixing OpenMP and MPI
•  Compiler notes

152

OpenMP organizations

• OpenMP architecture review board URL, the
“owner” of the OpenMP specification:

www.openmp.org
• OpenMP User’s Group (cOMPunity) URL:

www.compunity.org

Get involved, join cOMPunity and help
define the future of OpenMP

153

Books about OpenMP

•  A book about OpenMP by a
team of authors at the forefront
of OpenMP’s evolution.

l  A book about how to “think
parallel” with examples in
OpenMP, MPI and java

Background references

154

A great book that explores key
patterns with Cilk, TBB, OpenCL,
and OpenMP (by McCool, Robison,
and Reinders)

An excellent introduction and
overview of multithreaded
programming in general (by Clay
Breshears)

155

OpenMP Papers
•  Sosa CP, Scalmani C, Gomperts R, Frisch MJ. Ab initio quantum chemistry on a

ccNUMA architecture using OpenMP. III. Parallel Computing, vol.26, no.7-8, July
2000, pp.843-56. Publisher: Elsevier, Netherlands.

•  Couturier R, Chipot C. Parallel molecular dynamics using OPENMP on a shared
memory machine. Computer Physics Communications, vol.124, no.1, Jan. 2000,
pp.49-59. Publisher: Elsevier, Netherlands.

•  Bentz J., Kendall R., “Parallelization of General Matrix Multiply Routines Using
OpenMP”, Shared Memory Parallel Programming with OpenMP, Lecture notes in
Computer Science, Vol. 3349, P. 1, 2005

•  Bova SW, Breshearsz CP, Cuicchi CE, Demirbilek Z, Gabb HA. Dual-level parallel
analysis of harbor wave response using MPI and OpenMP. International Journal of
High Performance Computing Applications, vol.14, no.1, Spring 2000, pp.49-64.
Publisher: Sage Science Press, USA.

•  Ayguade E, Martorell X, Labarta J, Gonzalez M, Navarro N. Exploiting multiple
levels of parallelism in OpenMP: a case study. Proceedings of the 1999
International Conference on Parallel Processing. IEEE Comput. Soc. 1999, pp.
172-80. Los Alamitos, CA, USA.

•  Bova SW, Breshears CP, Cuicchi C, Demirbilek Z, Gabb H. Nesting OpenMP in an
MPI application. Proceedings of the ISCA 12th International Conference. Parallel
and Distributed Systems. ISCA. 1999, pp.566-71. Cary, NC, USA.

156

OpenMP Papers (continued)
•  Jost G., Labarta J., Gimenez J., What Multilevel Parallel Programs do when you are

not watching: a Performance analysis case study comparing MPI/OpenMP, MLP, and
Nested OpenMP, Shared Memory Parallel Programming with OpenMP, Lecture notes
in Computer Science, Vol. 3349, P. 29, 2005

•  Gonzalez M, Serra A, Martorell X, Oliver J, Ayguade E, Labarta J, Navarro N.
Applying interposition techniques for performance analysis of OPENMP parallel
applications. Proceedings 14th International Parallel and Distributed Processing
Symposium. IPDPS 2000. IEEE Comput. Soc. 2000, pp.235-40.

•  Chapman B, Mehrotra P, Zima H. Enhancing OpenMP with features for locality
control. Proceedings of Eighth ECMWF Workshop on the Use of Parallel Processors
in Meteorology. Towards Teracomputing. World Scientific Publishing. 1999, pp.
301-13. Singapore.

•  Steve W. Bova, Clay P. Breshears, Henry Gabb, Rudolf Eigenmann, Greg Gaertner,
Bob Kuhn, Bill Magro, Stefano Salvini. Parallel Programming with Message Passing
and Directives; SIAM News, Volume 32, No 9, Nov. 1999.

•  Cappello F, Richard O, Etiemble D. Performance of the NAS benchmarks on a cluster
of SMP PCs using a parallelization of the MPI programs with OpenMP. Lecture Notes
in Computer Science Vol.1662. Springer-Verlag. 1999, pp.339-50.

•  Liu Z., Huang L., Chapman B., Weng T., Efficient Implementationi of OpenMP for
Clusters with Implicit Data Distribution, Shared Memory Parallel Programming with
OpenMP, Lecture notes in Computer Science, Vol. 3349, P. 121, 2005

157

OpenMP Papers (continued)

•  B. Chapman, F. Bregier, A. Patil, A. Prabhakar, “Achieving performance
under OpenMP on ccNUMA and software distributed shared memory
systems,” Concurrency and Computation: Practice and Experience.
14(8-9): 713-739, 2002.

•  J. M. Bull and M. E. Kambites. JOMP: an OpenMP-like interface for
Java. Proceedings of the ACM 2000 conference on Java Grande, 2000,
Pages 44 - 53.

•  L. Adhianto and B. Chapman, “Performance modeling of communication
and computation in hybrid MPI and OpenMP applications, Simulation
Modeling Practice and Theory, vol 15, p. 481-491, 2007.

•  Shah S, Haab G, Petersen P, Throop J. Flexible control structures for
parallelism in OpenMP; Concurrency: Practice and Experience, 2000;
12:1219-1239. Publisher John Wiley & Sons, Ltd.

•  Mattson, T.G., How Good is OpenMP? Scientific Programming, Vol. 11,
Number 2, p.81-93, 2003.

•  Duran A., Silvera R., Corbalan J., Labarta J., “Runtime Adjustment of
Parallel Nested Loops”, Shared Memory Parallel Programming with
OpenMP, Lecture notes in Computer Science, Vol. 3349, P. 137, 2005

158

Appendices
•  Sources for additional information
•  OpenMP History
•  Solutions to exercises
– Exercise 1: hello world
– Exercise 2: Simple SPMD pi program
– Exercise 3: SPMD pi without false sharing
– Exercise 4: Loop level pi
– Exercise 5: Mandelbrot Set area
– Exercise 6: Recursive pi program

•  Challenge Problems
– Challenge 1: Molecular dynamics
– Challenge 2: Monte Carlo pi and random numbers
– Challenge 3: Matrix multiplication
– Challenge 4: Linked lists
– Challenge 5: Recursive matrix multiplication

•  Fortran and OpenMP
•  Mixing OpenMP and MPI
•  Compiler notes

159

OpenMP pre-history

•  OpenMP based upon SMP directive standardization efforts
PCF and aborted ANSI X3H5 – late 80’s
– Nobody fully implemented either standard
– Only a couple of partial implementations

•  Vendors considered proprietary API’s to be a competitive
feature:
– Every vendor had proprietary directives sets
– Even KAP, a “portable” multi-platform parallelization tool used

different directives on each platform

PCF – Parallel computing forum KAP – parallelization tool from KAI.

160

History of OpenMP

SGI

Cray

Merged,
needed
commonality
across
products

KAI ISV - needed
larger market

was tired of
recoding for
SMPs. Urged
vendors to
standardize.

ASCI

Wrote a
rough draft
straw man
SMP API

DEC

IBM

Intel

HP

Other vendors
invited to join

1997

161

OpenMP Release History

Tasking, runtime control over loop
schedules, explicit control over nested
parallel regions, refined control over
resources
Expanded atomics, refined tasking, and more
control over nested parallel regions

GPGPU support,
user defined
reductions, and
more

162

Appendices
•  Sources for Additional information
•  OpenMP History
•  Solutions to exercises
– Exercise 1: hello world
– Exercise 2: Simple SPMD Pi program
– Exercise 3: SPMD Pi without false sharing
– Exercise 4: Loop level Pi
– Exercise 5: Mandelbrot Set area
– Exercise 6: Recursive pi program

•  Challenge Problems
– Challenge 1: Molecular dynamics
– Challenge 2: Monte Carlo pi and random numbers
– Challenge 3: Matrix multiplication
– Challenge 4: linked lists
– Challenge 5: Recursive matrix multiplication

•  Fortran and OpenMP
•  Mixing OpenMP and MPI
•  Compiler Notes

163

Appendices
•  Sources for Additional information
•  OpenMP History
•  Solutions to exercises
– Exercise 1: hello world
– Exercise 2: Simple SPMD Pi program
– Exercise 3: SPMD Pi without false sharing
– Exercise 4: Loop level Pi
– Exercise 5: Mandelbrot Set area
– Exercise 6: Recursive pi program

•  Challenge Problems
– Challenge 1: Molecular dynamics
– Challenge 2: Monte Carlo pi and random numbers
– Challenge 3: Matrix multiplication
– Challenge 4: linked lists
– Challenge 5: Recursive matrix multiplication

•  Fortran and OpenMP
•  Mixing OpenMP and MPI
•  Compiler Notes

164

Exercise 1: Solution
A multi-threaded “Hello world” program

•  Write a multithreaded program where each thread prints
“hello world”.

#include “omp.h”
void main()
{

#pragma omp parallel
 {

 int ID = omp_get_thread_num();
 printf(“ hello(%d) ”, ID);
 printf(“ world(%d) \n”, ID);
 }
}

Sample Output:
hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

OpenMP include file

Parallel region with default
number of threads

Runtime library function to
return a thread ID. End of the Parallel region

165

Appendices
•  Sources for Additional information
•  OpenMP History
•  Solutions to exercises
– Exercise 1: hello world
– Exercise 2: Simple SPMD Pi program
– Exercise 3: SPMD Pi without false sharing
– Exercise 4: Loop level Pi
– Exercise 5: Mandelbrot Set area
– Exercise 6: Recursive pi program

•  Challenge Problems
– Challenge 1: Molecular dynamics
– Challenge 2: Monte Carlo pi and random numbers
– Challenge 3: Matrix multiplication
– Challenge 4: linked lists
– Challenge 5: Recursive matrix multiplication

•  Fortran and OpenMP
•  Mixing OpenMP and MPI
•  Compiler Notes

166

The SPMD pattern

•  The most common approach for parallel algorithms is the
SPMD or Single Program Multiple Data pattern.

•  Each thread runs the same program (Single Program), but
using the thread ID, they operate on different data (Multiple
Data) or take slightly different paths through the code.

•  In OpenMP this means:
– A parallel region “near the top of the code”.
– Pick up thread ID and num_threads.
– Use them to split up loops and select different blocks of data to work on.

167

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i, nthreads; double pi, sum[NUM_THREADS];

 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);

 #pragma omp parallel
 {

 int i, id,nthrds;
 double x;
 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;

 for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);
 }

 }
 for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i] * step;

}

Exercise 2: A simple SPMD pi program

Promote scalar to an array
dimensioned by number of
threads to avoid race
condition.

This is a common trick in
SPMD programs to create a
cyclic distribution of loop
iterations

Only one thread should copy the
number of threads to the global
value to make sure multiple threads
writing to the same address don’t
conflict.

168

Appendices
•  Sources for Additional information
•  OpenMP History
•  Solutions to exercises
– Exercise 1: hello world
– Exercise 2: Simple SPMD Pi program
– Exercise 3: SPMD Pi without false sharing
– Exercise 4: Loop level Pi
– Exercise 5: Mandelbrot Set area
– Exercise 6: Recursive pi program

•  Challenge Problems
– Challenge 1: molecular dynamics
– Challenge 2: Monte Carlo pi and random numbers
– Challenge 3: Matrix multiplication
– Challenge 4: linked lists
– Challenge 5: Recursive matrix multiplication

•  Fortran and OpenMP
•  Mixing OpenMP and MPI
•  Compiler Notes

169

False sharing

•  If independent data elements happen to sit on the same
cache line, each update will cause the cache lines to “slosh
back and forth” between threads.
– This is called “false sharing”.

•  If you promote scalars to an array to support creation of an
SPMD program, the array elements are contiguous in
memory and hence share cache lines.
– Result … poor scalability

•  Solution:
– When updates to an item are frequent, work with local copies of data

instead of an array indexed by the thread ID.
– Pad arrays so elements you use are on distinct cache lines.

170

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ double pi; step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{

 int i, id,nthrds; double x, sum;
 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;

 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();

 for (i=id, sum=0.0;i< num_steps; i=i+nthrds){
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }

 #pragma omp critical
 pi += sum * step;

}
}

Exercise 3: SPMD pi without false sharing

Sum goes “out of scope” beyond the parallel
region … so you must sum it in here. Must
protect summation into pi in a critical region so
updates don’t conflict

No array, so
no false
sharing.

Create a scalar local to
each thread to
accumulate partial
sums.

171

Appendices
•  Sources for Additional information
•  OpenMP History
•  Solutions to exercises
– Exercise 1: hello world
– Exercise 2: Simple SPMD Pi program
– Exercise 3: SPMD Pi without false sharing
– Exercise 4: Loop level Pi
– Exercise 5: Mandelbrot Set area
– Exercise 6: Recursive pi program

•  Challenge Problems
– Challenge 1: molecular dynamics
– Challenge 2: Monte Carlo pi and random numbers
– Challenge 3: Matrix multiplication
– Challenge 4: linked lists
– Challenge 5: Recursive matrix multiplication

•  Fortran and OpenMP
•  Mixing OpenMP and MPI
•  Compiler Notes

172

Exercise 4: Solution
#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum = 0.0;
 step = 1.0/(double) num_steps;
 #pragma omp parallel
 {
 double x;
 #pragma omp for reduction(+:sum)

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }

 }
 pi = step * sum;

}

173

Exercise 4: Solution

#include <omp.h>
static long num_steps = 100000; double step;

void main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;
#pragma omp parallel for private(x) reduction(+:sum)

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}

Note: we created a parallel
program without changing
any code and by adding 2
simple lines of text!

i private by
default

For good OpenMP
implementations,
reduction is more
scalable than critical.

174

Appendices
•  Sources for Additional information
•  OpenMP History
•  Solutions to exercises
– Exercise 1: hello world
– Exercise 2: Simple SPMD Pi program
– Exercise 3: SPMD Pi without false sharing
– Exercise 4: Loop level Pi
– Exercise 5: Mandelbrot Set area
– Exercise 6: Recursive pi program

•  Challenge Problems
– Challenge 1: molecular dynamics
– Challenge 2: Monte Carlo pi and random numbers
– Challenge 3: Matrix multiplication
– Challenge 4: linked lists
– Challenge 5: Recursive matrix multiplication

•  Fortran and OpenMP
•  Mixing OpenMP and MPI
•  Compiler Notes

Exercise 5: The Mandelbrot area program
#include <omp.h>
define NPOINTS 1000
define MXITR 1000
void testpoint(void);
struct d_complex{
 double r; double i;
};
struct d_complex c;
int numoutside = 0;

int main(){
 int i, j;
 double area, error, eps = 1.0e-5;
#pragma omp parallel for default(shared) \
 private(c,eps)
 for (i=0; i<NPOINTS; i++) {
 for (j=0; j<NPOINTS; j++) {
 c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
 c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;
 testpoint();
 }
 }
area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-numoutside)/
(double)(NPOINTS*NPOINTS);
 error=area/(double)NPOINTS;
} 175

void testpoint(void){
struct d_complex z;
 int iter;
 double temp;

 z=c;
 for (iter=0; iter<MXITR; iter++){
 temp = (z.r*z.r)-(z.i*z.i)+c.r;
 z.i = z.r*z.i*2+c.i;
 z.r = temp;
 if ((z.r*z.r+z.i*z.i)>4.0) {
 numoutside++;
 break;
 }
 }
}

When I run this program, I get a
different incorrect answer each
time I run it … there is a race
condition!!!!

Exercise 5: Area of a Mandelbrot set

•  Solution is in the file mandel_par.c
•  Errors:
– Eps is private but uninitialized. Two solutions
–  It’s read-only so you can make it shared.
– Make it firstprivate

– The loop index variable j is shared by default; make it private
– The variable c has global scope so “testpoint” may pick up the global

value rather than the private value in the loop; solution … pass c as
an arg to testpoint
– Updates to “numoutside” are a race; protect with an atomic.

176

Debugging parallel programs

•  Find tools that work with your environment and learn to use
them; a good parallel debugger can make a huge difference

•  But parallel debuggers are not portable and you will
assuredly need to debug “by hand” at some point

•  There are tricks to help you; the most important is to use the
default(none) pragma

177

#pragma omp parallel for default(none) private(c, eps)
 for (i=0; i<NPOINTS; i++) {
 for (j=0; j<NPOINTS; j++) {
 c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
 c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;
 testpoint();
 }
 }
}

Using
default(none)
generates a
compiler error
that j is
unspecified.

Exercise 5: The Mandelbrot area program
#include <omp.h>
define NPOINTS 1000
define MXITR 1000
struct d_complex{
 double r; double i;
};
void testpoint(struct d_complex);
struct d_complex c;
int numoutside = 0;

int main(){
 int i, j;
 double area, error, eps = 1.0e-5;
#pragma omp parallel for default(shared) private(c, j) \
 firstpriivate(eps)
 for (i=0; i<NPOINTS; i++) {
 for (j=0; j<NPOINTS; j++) {
 c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
 c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;
 testpoint(c);
 }
 }
area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-
numoutside)/(double)(NPOINTS*NPOINTS);
 error=area/(double)NPOINTS;
} 178

void testpoint(struct d_complex c){
struct d_complex z;
 int iter;
 double temp;

 z=c;
 for (iter=0; iter<MXITR; iter++){
 temp = (z.r*z.r)-(z.i*z.i)+c.r;
 z.i = z.r*z.i*2+c.i;
 z.r = temp;
 if ((z.r*z.r+z.i*z.i)>4.0) {
 #pragma omp atomic
 numoutside++;
 break;
 }
 }
}

Other errors found using a debugger or
by inspection:
•  eps was not initialized
•  Protect updates of numoutside
•  Which value of c die testpoint()

see? Global or private?

179

Appendices
•  Sources for Additional information
•  OpenMP History
•  Solutions to exercises
– Exercise 1: hello world
– Exercise 2: Simple SPMD Pi program
– Exercise 3: SPMD Pi without false sharing
– Exercise 4: Loop level Pi
– Exercise 5: Mandelbrot Set area
– Exercise 6: Recursive pi program

•  Challenge Problems
– Challenge 1: molecular dynamics
– Challenge 2: Monte Carlo pi and random numbers
– Challenge 3: Matrix multiplication
– Challenge 4: linked lists
– Challenge 5: Recursive matrix multiplication

•  Fortran and OpenMP
•  Mixing OpenMP and MPI
•  Compiler Notes

Divide and conquer pattern

•  Use when:
– A problem includes a method to divide into subproblems

and a way to recombine solutions of subproblems into a
global solution

•  Solution
– Define a split operation
– Continue to split the problem until subproblems are small

enough to solve directly
– Recombine solutions to subproblems to solve original

global problem
•  Note:
– Computing may occur at each phase (split, leaves,

recombine)

Divide and conquer

•  Split the problem into smaller sub-problems; continue until
the sub-problems can be solve directly

n  3 Options:
¨  Do work as you split

into sub-problems
¨  Do work only at the

leaves
¨  Do work as you

recombine

Program: OpenMP tasks (divide and conquer pattern)
#include <omp.h>
static long num_steps = 100000000;
#define MIN_BLK 10000000
double pi_comp(int Nstart,int Nfinish,double step)
{ int i,iblk;
 double x, sum = 0.0,sum1, sum2;
 if (Nfinish-Nstart < MIN_BLK){
 for (i=Nstart;i< Nfinish; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 }
 else{
 iblk = Nfinish-Nstart;
 #pragma omp task shared(sum1)
 sum1 = pi_comp(Nstart, Nfinish-iblk/2,step);
 #pragma omp task shared(sum2)
 sum2 = pi_comp(Nfinish-iblk/2, Nfinish, step);
 #pragma omp taskwait
 sum = sum1 + sum2;
 }return sum;
} 182

 int main ()
 {
 int i;
 double step, pi, sum;
 step = 1.0/(double) num_steps;
 #pragma omp parallel
 {
 #pragma omp single
 sum =

 pi_comp(0,num_steps,step);
 }
 pi = step * sum;
 }

Results*: pi with tasks

183

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW thread)
Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st SPMD SPMD
critical

PI Loop Pi tasks

1 1.86 1.87 1.91 1.87

2 1.03 1.00 1.02 1.00

3 1.08 0.68 0.80 0.76

4 0.97 0.53 0.68 0.52

184

Appendices
•  Sources for Additional information
•  OpenMP History
•  Solutions to exercises
– Exercise 1: hello world
– Exercise 2: Simple SPMD Pi program
– Exercise 3: SPMD Pi without false sharing
– Exercise 4: Loop level Pi
– Exercise 5: Mandelbrot Set area
– Exercise 6: Recursive pi program

•  Challenge Problems
– Challenge 1: molecular dynamics
– Challenge 2: Monte Carlo pi and random numbers
– Challenge 3: Matrix multiplication
– Challenge 4: linked lists
– Challenge 5: Recursive matrix multiplication

•  Fortran and OpenMP
•  Mixing OpenMP and MPI
•  Compiler Notes

185

Appendices
•  Sources for Additional information
•  OpenMP History
•  Solutions to exercises
– Exercise 1: hello world
– Exercise 2: Simple SPMD Pi program
– Exercise 3: SPMD Pi without false sharing
– Exercise 4: Loop level Pi
– Exercise 5: Mandelbrot Set area
– Exercise 6: Recursive pi program

•  Challenge Problems
– Challenge 1: molecular dynamics
– Challenge 2: Monte Carlo pi and random numbers
– Challenge 3: Matrix multiplication
– Challenge 4: linked lists
– Challenge 5: Recursive matrix multiplication

•  Fortran and OpenMP
•  Mixing OpenMP and MPI
•  Compiler Notes

Challenge 1: Solution

#pragma omp parallel for default (none) \
 shared(x,f,npart,rcoff,side) \
 reduction(+:epot,vir) \
 schedule (static,32)
 for (int i=0; i<npart*3; i+=3) {
 ………

Loop is not well load
balanced: best schedule
has to be found by
experiment.

Compiler will warn you if
you have missed some
variables

........
#pragma omp atomic
 f[j] -= forcex;
#pragma omp atomic
 f[j+1] -= forcey;
#pragma omp atomic
 f[j+2] -= forcez;
 }
 }
#pragma omp atomic
 f[i] += fxi;
#pragma omp atomic
 f[i+1] += fyi;
#pragma omp atomic
 f[i+2] += fzi;
 }
 }

All updates to f must be
atomic

Challenge 1: Solution (cont.)

Challenge 1: With orphaning

#pragma omp single
{
 vir = 0.0;
 epot = 0.0;
}
#pragma omp for reduction(+:epot,vir) schedule (static,32)
 for (int i=0; i<npart*3; i+=3) {
………

All variables which used to
be shared here are now
implicitly determined

Implicit barrier needed to avoid race condition
with update of reduction variables at end of the
for construct

Challenge 1: With array reduction

 ftemp[myid][j] -= forcex;
 ftemp[myid][j+1] -= forcey;
 ftemp[myid][j+2] -= forcez;
 }
 }
 ftemp[myid][i] += fxi;
 ftemp[myid][i+1] += fyi;
 ftemp[myid][i+2] += fzi;
 }

Replace atomics with
accumulation into array
with extra dimension

Challenge 1: With array reduction

….
#pragma omp for
 for(int i=0;i<(npart*3);i++){
 for(int id=0;id<nthreads;id++){
 f[i] += ftemp[id][i];

 ftemp[id][i] = 0.0;
 }

 }

Reduction can be done in
parallel

Zero ftemp for next time
round

191

Appendices
•  Sources for Additional information
•  OpenMP History
•  Solutions to exercises
– Exercise 1: hello world
– Exercise 2: Simple SPMD Pi program
– Exercise 3: SPMD Pi without false sharing
– Exercise 4: Loop level Pi
– Exercise 5: Mandelbrot Set area
– Exercise 6: Recursive pi program

•  Challenge Problems
– Challenge 1: molecular dynamics
– Challenge 2: Monte Carlo pi and random numbers
– Challenge 3: Matrix multiplication
– Challenge 4: linked lists
– Challenge 5: Recursive matrix multiplication

•  Fortran and OpenMP
•  Mixing OpenMP and MPI
•  Compiler Notes

192

Computers and random numbers
•  We use “dice” to make random numbers:
– Given previous values, you cannot predict the next value.
– There are no patterns in the series … and it goes on forever.

•  Computers are deterministic machines … set an initial state,
run a sequence of predefined instructions, and you get a
deterministic answer
– By design, computers are not random and cannot produce random

numbers.
•  However, with some very clever programming, we can make

“pseudo random” numbers that are as random as you need
them to be … but only if you are very careful.

•  Why do I care? Random numbers drive statistical methods
used in countless applications:
– Sample a large space of alternatives to find statistically good answers

(Monte Carlo methods).

193

Monte Carlo Calculations
Using Random numbers to solve tough problems

•  Sample a problem domain to estimate areas, compute probabilities,
find optimal values, etc.

•  Example: Computing π with a digital dart board:

l  Throw darts at the circle/square.
l  Chance of falling in circle is

proportional to ratio of areas:
Ac = r2 * π
As = (2*r) * (2*r) = 4 * r2

P = Ac/As = π /4
l  Compute π by randomly

choosing points, count the
fraction that falls in the circle,
compute pi.

2 * r

N= 10 π = 2.8

N=100 π = 3.16

N= 1000 π = 3.148

194

Parallel Programmers love Monte Carlo
algorithms

#include “omp.h”
static long num_trials = 10000;
int main ()
{
 long i; long Ncirc = 0; double pi, x, y;
 double r = 1.0; // radius of circle. Side of squrare is 2*r
 seed(0,-r, r); // The circle and square are centered at the origin
 #pragma omp parallel for private (x, y) reduction (+:Ncirc)
 for(i=0;i<num_trials; i++)
 {
 x = random(); y = random();
 if (x*x + y*y) <= r*r) Ncirc++;
 }

 pi = 4.0 * ((double)Ncirc/(double)num_trials);
 printf("\n %d trials, pi is %f \n",num_trials, pi);
}

Embarrassingly parallel: the
parallelism is so easy its
embarrassing.

Add two lines and you have a
parallel program.

195

Linear Congruential Generator (LCG)
•  LCG: Easy to write, cheap to compute, portable, OK quality

l  If you pick the multiplier and addend correctly, LCG has a period of
PMOD.

l  Picking good LCG parameters is complicated, so look it up
(Numerical Recipes is a good source). I used the following:

u MULTIPLIER = 1366
u ADDEND = 150889
u PMOD = 714025

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

196

LCG code

static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;
double random ()
{
 long random_next;

 random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
 random_last = random_next;

 return ((double)random_next/(double)PMOD);
}

Seed the pseudo random
sequence by setting
random_last

197

Running the PI_MC program with LCG generator

0.00001

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6

LCG - one thread

LCG, 4 threads,
trail 1
LCG 4 threads,
trial 2
LCG, 4 threads,
trial 3

Log 10 R
elative error

Log10 number of samples

Run the same
program the
same way and
get different
answers!

That is not
acceptable!

Issue: my LCG
generator is not
threadsafe

Program written using the Intel C/C++ compiler (10.0.659.2005) in Microsoft Visual studio 2005 (8.0.50727.42) and running on a dual-core laptop (Intel
T2400 @ 1.83 Ghz with 2 GB RAM) running Microsoft Windows XP.

198

LCG code: threadsafe version

static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;
#pragma omp threadprivate(random_last)
double random ()
{
 long random_next;

 random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
 random_last = random_next;

 return ((double)random_next/(double)PMOD);
}

random_last carries state
between random number
computations,

To make the generator
threadsafe, make
random_last threadprivate
so each thread has its own
copy.

199

Thread safe random number generators

Log
10 R

elative error

Log10 number of samples Thread safe
version gives the
same answer each
time you run the
program.

But for large
number of
samples, its quality
is lower than the
one thread result!

Why?

0.00001

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6 LCG - one

thread
LCG 4 threads,
trial 1
LCT 4 threads,
trial 2
LCG 4 threads,
trial 3
LCG 4 threads,
thread safe

200

Pseudo Random Sequences
•  Random number Generators (RNGs) define a sequence of pseudo-random

numbers of length equal to the period of the RNG

l  In a typical problem, you grab a subsequence of the RNG range

Seed determines starting point

l  Grab arbitrary seeds and you may generate overlapping sequences
u  E.g. three sequences … last one wraps at the end of the RNG period.

l  Overlapping sequences = over-sampling and bad statistics … lower quality or
even wrong answers!

Thread 1
Thread 2

Thread 3

201

Parallel random number generators
•  Multiple threads cooperate to generate and use random

numbers.
•  Solutions:
– Replicate and Pray
– Give each thread a separate, independent generator
– Have one thread generate all the numbers.
– Leapfrog … deal out sequence values “round robin”

as if dealing a deck of cards.
– Block method … pick your seed so each threads gets

a distinct contiguous block.
•  Other than “replicate and pray”, these are difficult to

implement. Be smart … buy a math library that does it
right.

If done right, can
generate the
same sequence
regardless of the
number of threads
…

Nice for
debugging, but
not really needed
scientifically.

Intel’s Math kernel Library supports all of these
methods.

202

MKL Random number generators (RNG)

#define BLOCK 100
double buff[BLOCK];
VSLStreamStatePtr stream;

vslNewStream(&ran_stream, VSL_BRNG_WH, (int)seed_val);

vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream,

 BLOCK, buff, low, hi)

vslDeleteStream(&stream);

l  MKL includes several families of RNGs in its vector statistics library.
l  Specialized to efficiently generate vectors of random numbers

Initialize a
stream or
pseudo
random
numbers

Select type of RNG
and set seed

Fill buff with BLOCK pseudo rand.
nums, uniformly distributed with values
between lo and hi.

Delete the stream when you are done

203

Wichmann-Hill generators (WH)

•  WH is a family of 273 parameter sets each defining a non-
overlapping and independent RNG.

•  Easy to use, just make each stream threadprivate and initiate RNG
stream so each thread gets a unique WG RNG.

VSLStreamStatePtr stream;

#pragma omp threadprivate(stream)

 …

vslNewStream(&ran_stream, VSL_BRNG_WH+Thrd_ID, (int)seed);

204

Independent Generator for each thread

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6

WH one
thread
WH, 2
threads
WH, 4
threads

Log
10 R

elative error

Log10 number of samples
Notice that once
you get beyond
the high error,
small sample
count range,
adding threads
doesn’t
decrease quality
of random
sampling.

205

 #pragma omp single
 { nthreads = omp_get_num_threads();
 iseed = PMOD/MULTIPLIER; // just pick a seed
 pseed[0] = iseed;
 mult_n = MULTIPLIER;
 for (i = 1; i < nthreads; ++i)
 {

 iseed = (unsigned long long)((MULTIPLIER * iseed) % PMOD);
 pseed[i] = iseed;
 mult_n = (mult_n * MULTIPLIER) % PMOD;

 }

 }
 random_last = (unsigned long long) pseed[id];

Leap Frog method
•  Interleave samples in the sequence of pseudo random numbers:
– Thread i starts at the ith number in the sequence
– Stride through sequence, stride length = number of threads.

•  Result … the same sequence of values regardless of the number of
threads.

One thread
computes offsets
and strided
multiplier

LCG with Addend = 0 just
to keep things simple

Each thread stores offset starting
point into its threadprivate “last
random” value

206

Same sequence with many threads.

•  We can use the leapfrog method to generate the same
answer for any number of threads

Steps One thread 2 threads 4 threads

1000 3.156 3.156 3.156

10000 3.1168 3.1168 3.1168

100000 3.13964 3.13964 3.13964

1000000 3.140348 3.140348 3.140348

10000000 3.141658 3.141658 3.141658

Used the MKL library with two generator streams per computation: one for the x values (WH) and one for
the y values (WH+1). Also used the leapfrog method to deal out iterations among threads.

207

Appendices
•  Sources for Additional information
•  OpenMP History
•  Solutions to exercises
– Exercise 1: hello world
– Exercise 2: Simple SPMD Pi program
– Exercise 3: SPMD Pi without false sharing
– Exercise 4: Loop level Pi
– Exercise 5: Mandelbrot Set area
– Exercise 6: Recursive pi program

•  Challenge Problems
– Challenge 1: molecular dynamics
– Challenge 2: Monte Carlo Pi and random numbers
– Challenge 3: Matrix multiplication
– Challenge 4: linked lists
– Challenge 5: Recursive matrix multiplication

•  Fortran and OpenMP
•  Mixing OpenMP and MPI
•  Compiler Notes

208

Challenge 3: Matrix Multiplication

•  Parallelize the matrix multiplication program in the file
matmul.c

•  Can you optimize the program by playing with how the loops
are scheduled?

•  Try the following and see how they interact with the
constructs in OpenMP
– Cache blocking
– Loop unrolling
– Vectorization

•  Goal: Can you approach the peak performance of the
computer?

209

Matrix multiplication

#pragma omp parallel for private(tmp, i, j, k)
 for (i=0; i<Ndim; i++){
 for (j=0; j<Mdim; j++){
 tmp = 0.0;
 for(k=0;k<Pdim;k++){
 /* C(i,j) = sum(over k) A(i,k) * B(k,j) */
 tmp += *(A+(i*Ndim+k)) * *(B+(k*Pdim+j));
 }
 *(C+(i*Ndim+j)) = tmp;
 }
 }

• On a dual core laptop

• 13.2 seconds 153 Mflops one thread

• 7.5 seconds 270 Mflops two threads

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

210

Appendices
•  Sources for Additional information
•  OpenMP History
•  Solutions to exercises
– Exercise 1: hello world
– Exercise 2: Simple SPMD Pi program
– Exercise 3: SPMD Pi without false sharing
– Exercise 4: Loop level Pi
– Exercise 5: Mandelbrot Set area
– Exercise 6: Recursive pi program

•  Challenge Problems
– Challenge 1: molecular dynamics
– Challenge 2: Monte Carlo Pi and random numbers
– Challenge 3: Matrix multiplication
– Challenge 4: linked lists
– Challenge 5: Recursive matrix multiplication

•  Fortran and OpenMP
•  Mixing OpenMP and MPI
•  Compiler Notes

211

Challenge 4: traversing linked lists

•  Consider the program linked.c
– Traverses a linked list computing a sequence of Fibonacci numbers at

each node.

•  Parallelize this program two different ways
1.  Use OpenMP tasks
2.  Use anything you choose in OpenMP other than tasks.

•  The second approach (no tasks) can be difficult and may
take considerable creativity in how you approach the
problem (hence why its such a pedagogically valuable
problem).

212

Linked lists with tasks (OpenMP 3)
•  See the file Linked_omp3_tasks.c

#pragma omp parallel
{
 #pragma omp single
 {
 p=head;
 while (p) {

 #pragma omp task firstprivate(p)
 processwork(p);
 p = p->next;
 }
 }
}

Creates a task with its own
copy of “p” initialized to the
value of “p” when the task is
defined

213

Challenge 4: traversing linked lists

•  Consider the program linked.c
– Traverses a linked list computing a sequence of Fibonacci numbers at

each node.

•  Parallelize this program two different ways
1.  Use OpenMP tasks
2.  Use anything you choose in OpenMP other than tasks.

•  The second approach (no tasks) can be difficult and may
take considerable creativity in how you approach the
problem (hence why its such a pedagogically valuable
problem).

214

Linked lists without tasks
•  See the file Linked_omp25.c

 while (p != NULL) {
 p = p->next;

 count++;
 }
 p = head;
 for(i=0; i<count; i++) {
 parr[i] = p;
 p = p->next;
 }
 #pragma omp parallel
 {
 #pragma omp for schedule(static,1)
 for(i=0; i<count; i++)
 processwork(parr[i]);
 }

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

Default schedule Static,1
One Thread 48 seconds 45 seconds
Two Threads 39 seconds 28 seconds

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

215

Linked lists without tasks: C++ STL
•  See the file Linked_cpp.cpp

 std::vector<node *> nodelist;
 for (p = head; p != NULL; p = p->next)

 nodelist.push_back(p);

int j = (int)nodelist.size();
#pragma omp parallel for schedule(static,1)
 for (int i = 0; i < j; ++i)

 processwork(nodelist[i]);

C++, default sched. C++, (static,1) C, (static,1)
One Thread 37 seconds 49 seconds 45 seconds
Two Threads 47 seconds 32 seconds 28 seconds

Copy pointer to each node into an array

Count number of items in the linked list

Process nodes in parallel with a for loop

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

216

Appendices
•  Sources for Additional information
•  OpenMP History
•  Solutions to exercises
– Exercise 1: hello world
– Exercise 2: Simple SPMD Pi program
– Exercise 3: SPMD Pi without false sharing
– Exercise 4: Loop level Pi
– Exercise 5: Mandelbrot Set area
– Exercise 6: Recursive pi program

•  Challenge Problems
– Challenge 1: molecular dynamics
– Challenge 2: Monte Carlo Pi and random numbers
– Challenge 3: Matrix multiplication
– Challenge 4: linked lists
– Challenge 5: Recursive matrix multiplication

•  Fortran and OpenMP
•  Mixing OpenMP and MPI
•  Compiler Notes

#define THRESHOLD 32768 // product size below which simple matmult code is called

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,
 double **A, double **B, double **C)

// Dimensions: A[mf..ml][pf..pl] B[pf..pl][nf..nl] C[mf..ml][nf..nl]

{
 if ((ml-mf)*(nl-nf)*(pl-pf) < THRESHOLD)
 matmult (mf, ml, nf, nl, pf, pl, A, B, C);
 else
 {
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{
 matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C); // C11 += A11*B11
 matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C); // C11 += A12*B21
}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{
 matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C); // C12 += A11*B12
 matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C); // C12 += A12*B22
}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{
 matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C); // C21 += A21*B11
 matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C); // C21 += A22*B21
}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{
 matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C); // C22 += A21*B12
 matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C); // C22 += A22*B22
}
#pragma omp taskwait

 }
}

Recursive matrix multiplication

217

•  Could be executed in parallel as 4 tasks
–  Each task executes the two calls for the same output submatrix of C

•  However, the same number of multiplication operations needed

218

Appendices
•  Sources for Additional information
•  OpenMP History
•  Solutions to exercises
– Exercise 1: hello world
– Exercise 2: Simple SPMD Pi program
– Exercise 3: SPMD Pi without false sharing
– Exercise 4: Loop level Pi
– Exercise 5: Mandelbrot Set area
– Exercise 6: Recursive pi program

•  Challenge Problems
– Challenge 1: molecular dynamics
– Challenge 2: Monte Carlo Pi and random numbers
– Challenge 3: Matrix multiplication
– Challenge 4: linked lists
– Challenge 5: Recursive matrix multiplication

•  Fortran and OpenMP
•  Mixing OpenMP and MPI
•  Compiler Notes

Fortran and OpenMP

•  We were careful to design the OpenMP constructs so they
cleanly map onto C, C++ and Fortran.

•  There are a few syntactic differences that once understood,
will allow you to move back and forth between languages.

•  In the specification, language specific notes are included
when each construct is defined.

219

OpenMP:
Some syntax details for Fortran programmers

•  Most of the constructs in OpenMP are compiler directives.
– For Fortran, the directives take one of the forms:

C$OMP construct [clause [clause]…]
!$OMP construct [clause [clause]…]
*$OMP construct [clause [clause]…]

•  The OpenMP include file and lib module
use omp_lib
Include omp_lib.h

OpenMP:
Structured blocks (Fortran)

C$OMP PARALLEL
10 wrk(id) = garbage(id)
 res(id) = wrk(id)**2
 if(conv(res(id)) goto 10
C$OMP END PARALLEL
 print *,id

– Most OpenMP constructs apply to structured blocks.
– Structured block: a block of code with one point of

entry at the top and one point of exit at the bottom.
– The only “branches” allowed are STOP statements

in Fortran and exit() in C/C++.

C$OMP PARALLEL
10 wrk(id) = garbage(id)
30 res(id)=wrk(id)**2
 if(conv(res(id))goto 20
 go to 10
C$OMP END PARALLEL
 if(not_DONE) goto 30
20 print *, id

A structured block Not A structured block

OpenMP:
Structured Block Boundaries
l  In Fortran: a block is a single statement or a group of statements between directive/

end-directive pairs.

C$OMP PARALLEL
10 wrk(id) = garbage(id)
 res(id) = wrk(id)**2
 if(conv(res(id)) goto 10
C$OMP END PARALLEL

C$OMP PARALLEL DO
 do I=1,N

 res(I)=bigComp(I)
 end do
C$OMP END PARALLEL DO

l  The “construct/end construct” pairs is done anywhere a structured block appears in
Fortran. Some examples:
l  DO … END DO
l  PARALLEL … END PARREL
l  CRICITAL … END CRITICAL
l  SECTION … END SECTION

l  SECTIONS … END SECTIONS
l  SINGLE … END SINGLE
l  MASTER … END MASTER

Runtime library routines
•  The include file or module defines parameters
–  Integer parameter omp_locl_kind
–  Integer parameter omp_nest_lock_kind
–  Integer parameter omp_sched_kind
–  Integer parameter openmp_version
– With value that matches C’s _OPEMMP macro

•  Fortran interfaces are similar to those used with C
– Subroutine omp_set_num_threads (num_threads)
–  Integer function omp_get_num_threads()
–  Integer function omp_get_thread_num()\
– Subroutine omp_init_lock(svar)
–  Integer(kind=omp_lock_kind) svar

– Subroutine omp_destroy_lock(svar)
– Subroutine omp_set_lock(svar)
– Subroutine omp_unset_lock(svar)

223

224

Appendices
•  Sources for Additional information
•  OpenMP History
•  Solutions to exercises
– Exercise 1: hello world
– Exercise 2: Simple SPMD Pi program
– Exercise 3: SPMD Pi without false sharing
– Exercise 4: Loop level Pi
– Exercise 5: Mandelbrot Set area
– Exercise 6: Recursive pi program

•  Challenge Problems
– Challenge 1: molecular dynamics
– Challenge 2: Monte Carlo Pi and random numbers
– Challenge 3: Matrix multiplication
– Challenge 4: linked lists
– Challenge 5: Recursive matrix multiplication

•  Flush, memory models and OpenMP: producer consumer
•  Fortran and OpenMP
•  Mixing OpenMP and MPI
•  Compiler Notes

225

How do people mix MPI and OpenMP?

Replicate the program.

Add glue code

Break up the data

A sequential program
working on a data set

• Create the MPI program with
its data decomposition.

•  Use OpenMP inside each
MPI process.

226

Pi program with MPI and OpenMP
#include <mpi.h>
#include “omp.h”
void main (int argc, char *argv[])
{

 int i, my_id, numprocs; double x, pi, step, sum = 0.0 ;
 step = 1.0/(double) num_steps ;

 MPI_Init(&argc, &argv) ;
 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;
 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
 my_steps = num_steps/numprocs ;

#pragma omp parallel for reduction(+:sum) private(x)
 for (i=my_id*my_steps; i<(m_id+1)*my_steps ; i++)
 {
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }
 sum *= step ;
 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
 MPI_COMM_WORLD) ;

}

Get the MPI
part done
first, then add
OpenMP
pragma
where it
makes sense
to do so

227

Key issues when mixing OpenMP and MPI
1.  Messages are sent to a process not to a particular thread.
–  Not all MPIs are threadsafe. MPI 2.0 defines threading modes:
–  MPI_Thread_Single: no support for multiple threads
–  MPI_Thread_Funneled: Mult threads, only master calls MPI
–  MPI_Thread_Serialized: Mult threads each calling MPI, but they

do it one at a time.
–  MPI_Thread_Multiple: Multiple threads without any restrictions

–  Request and test thread modes with the function:
MPI_init_thread(desired_mode, delivered_mode, ierr)

2.  Environment variables are not propagated by mpirun. You’ll
need to broadcast OpenMP parameters and set them with
the library routines.

228

Dangerous Mixing of MPI and OpenMP
•  The following will work only if MPI_Thread_Multiple is supported … a

level of support I wouldn’t depend on.
MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;
#pragma omp parallel
{
 int tag, swap_neigh, stat, omp_id = omp_thread_num();
 long buffer [BUFF_SIZE], incoming [BUFF_SIZE];
 big_ugly_calc1(omp_id, mpi_id, buffer);
 // Finds MPI id and tag
so
 neighbor(omp_id, mpi_id, &swap_neigh, &tag); // messages don’t conflict

 MPI_Send (buffer, BUFF_SIZE, MPI_LONG, swap_neigh,
 tag, MPI_COMM_WORLD);
 MPI_Recv (incoming, buffer_count, MPI_LONG, swap_neigh,
 tag, MPI_COMM_WORLD, &stat);

 big_ugly_calc2(omp_id, mpi_id, incoming, buffer);
#pragma critical
 consume(buffer, omp_id, mpi_id);
}

229

Messages and threads
•  Keep message passing and threaded sections of your

program separate:
– Setup message passing outside OpenMP parallel regions

(MPI_Thread_funneled)
– Surround with appropriate directives (e.g. critical section or master)

(MPI_Thread_Serialized)
– For certain applications depending on how it is designed it may not

matter which thread handles a message. (MPI_Thread_Multiple)
–  Beware of race conditions though if two threads are probing on the same

message and then racing to receive it.

230

Safe Mixing of MPI and OpenMP
Put MPI in sequential regions

MPI_Init(&argc, &argv) ; MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;

// a whole bunch of initializations

#pragma omp parallel for
for (I=0;I<N;I++) {
 U[I] = big_calc(I);
}

 MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, swap_neigh,
 tag, MPI_COMM_WORLD);

 MPI_Recv (incoming, buffer_count, MPI_DOUBLE, swap_neigh,
 tag, MPI_COMM_WORLD, &stat);

#pragma omp parallel for
for (I=0;I<N;I++) {
 U[I] = other_big_calc(I, incoming);
}

consume(U, mpi_id);

Technically Requires
MPI_Thread_funneled, but I
have never had a problem with
this approach … even with pre-
MPI-2.0 libraries.

231

Safe Mixing of MPI and OpenMP
Protect MPI calls inside a parallel region

MPI_Init(&argc, &argv) ; MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;

// a whole bunch of initializations

#pragma omp parallel
{
#pragma omp for
 for (I=0;I<N;I++) U[I] = big_calc(I);

#pragma master
{
 MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, neigh, tag, MPI_COMM_WORLD);

 MPI_Recv (incoming, count, MPI_DOUBLE, neigh, tag, MPI_COMM_WORLD,
 &stat);
}
#pragma omp barrier
#pragma omp for
 for (I=0;I<N;I++) U[I] = other_big_calc(I, incoming);

#pragma omp master
 consume(U, mpi_id);
}

Technically Requires
MPI_Thread_funneled, but I
have never had a problem with
this approach … even with pre-
MPI-2.0 libraries.

232

Hybrid OpenMP/MPI works, but is it worth it?

•  Literature* is mixed on the hybrid model: sometimes its better, sometimes
MPI alone is best.

•  There is potential for benefit to the hybrid model
–  MPI algorithms often require replicated data making them less memory

efficient.
–  Fewer total MPI communicating agents means fewer messages and less

overhead from message conflicts.
–  Algorithms with good cache efficiency should benefit from shared caches of

multi-threaded programs.
–  The model maps perfectly with clusters of SMP nodes.

•  But really, it’s a case by case basis and to large extent depends on the
particular application.

*L. Adhianto and Chapman, 2007

233

Appendices
•  Sources for Additional information
•  OpenMP History
•  Solutions to exercises
– Exercise 1: hello world
– Exercise 2: Simple SPMD Pi program
– Exercise 3: SPMD Pi without false sharing
– Exercise 4: Loop level Pi
– Exercise 5: Mandelbrot Set area
– Exercise 6: Recursive pi program

•  Challenge Problems
– Challenge 1: molecular dynamics
– Challenge 2: Monte Carlo Pi and random numbers
– Challenge 3: Matrix multiplication
– Challenge 4: linked lists
– Challenge 5: Recursive matrix multiplication

•  Fortran and OpenMP
•  Mixing OpenMP and MPI
•  Compiler Notes

234

Compiler notes: Intel on Windows

•  Intel compiler:
– Launch SW dev environment … on my laptop I use:
–  start/intel software development tools/intel C++ compiler 11.0/C+ build

environment for 32 bit apps
–  cd to the directory that holds your source code
– Build software for program foo.c
–  icl /Qopenmp foo.c

– Set number of threads environment variable
–  set OMP_NUM_THREADS=4

– Run your program
–  foo.exe

To get rid of the pwd on the prompt, type

 prompt = %

235

Compiler notes: Visual Studio

•  Start “new project”
•  Select win 32 console project
– Set name and path
– On the next panel, Click “next” instead of finish so you can select an

empty project on the following panel.
– Drag and drop your source file into the source folder on the visual

studio solution explorer
– Activate OpenMP
– Go to project properties/configuration properties/C.C++/language
… and activate OpenMP

•  Set number of threads inside the program
•  Build the project
•  Run “without debug” from the debug menu.

236

Compiler notes: Other

•  Linux and OS X with gcc:
>  gcc -fopenmp foo.c
>  export OMP_NUM_THREADS=4
>  ./a.out

•  Linux and OS X with PGI:
>  pgcc -mp foo.c
>  export OMP_NUM_THREADS=4
>  ./a.out

for the Bash shell

237

OpenMP constructs

•  #pragma omp parallel
•  #pragma omp for
•  #pragma omp critical
•  #pragma omp atomic
•  #pragma omp barrier
•  Data environment clauses
–  private (variable_list)
–  firstprivate (variable_list)
–  lastprivate (variable_list)
–  reduction(+:variable_list)

•  Tasks (remember … private data is made firstprivate by default)
–  pragma omp task
–  pragma omp taskwait

•  #pragma threadprivate(variable_list)

Where variable list is a comma
separated list of variables

Print the value of the macro

_OPENMP

And its value will be

yyyymm

For the year and month of the spec
the implementation used

